K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

a, \(E\left(x\right)=-\left(x+1\right)^2+12\)

giả sử đa thức trên có nghiệm khi \(-\left(x+1\right)^2+12=0\)

\(\Leftrightarrow\left(x+1\right)^2=12\Leftrightarrow\left(x+1\right)^2-12=0\)

\(\Leftrightarrow\left(x+1-\sqrt{12}\right)\left(x+1+\sqrt{12}\right)=0\)

Vậy giả sử là đúng nên đa thức trên có nghiệm 

b, \(F\left(x\right)=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có : \(\left(x-1\right)^2\ge0\forall x;4>0\)

Vậy đa thức trên ko có nghiệm ( đpcm )

c, \(G\left(x\right)=x^2+6x+18=\left(x+3\right)^2+9\)

Ta có : \(\left(x+3\right)^2\ge0\forall x;9>0\)

Vậy đa thức trên ko có nghiệm ( đpcm )

P/s : ý a mình nghĩ chỉ có thế này thôi \(\left(x+1\right)^2+12\)xem lại đề nha 

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

10 tháng 4 2023

cảm ơn bn nha

 

4:

a: f(x)=0

=>-x-4=0

=>x=-4

b: g(x)=0

=>x^2+x+4=0

Δ=1^2-4*1*4=1-16=-15<0

=>g(x) ko có nghiệm 

c: m(x)=0

=>2x-2=0

=>x=1

d: n(x)=0

=>7x+2=0

=>x=-2/7

31 tháng 3 2019

bạn chứng minh nó khác 0 là được

1 tháng 4 2019

a.Ta có:x2>0 với mọi x

=>f(x)=x2+x+1>0 với mọi x

=>f(x) vô nghiệm

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

`a,`

`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`

`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`

`F(x)=6x^4+6x^3-5x-11`

`b,`

`K(x)=F(x)+G(x)`

`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`

`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`

`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`

`K(x)=12x^4+12x^3-x^2-10x-38`

`c,`

`H(x)=F(x)-G(x)`

`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`

`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`

`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`

`H(x)=x^2+16`

Đặt `x^2+16=0`

Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)

`->` Đa thức `H(x)` vô nghiệm.

16 tháng 4 2023

Mình cần gấp lắm r, giúp mình với

 

10 tháng 12 2018

Chọn C

Ta có

f(-3) = - (-3) - 3 = 0,

g(-3) = (-3)2 + 3 = 12,

h(-3) = (-3)2 - 9 = 0,

k(-3) = (-3)2-2.(-3) - 15 = 0

Nên x = -3 là nghiệm của f(x), g(x), k(x).

13 tháng 4 2022

cho B(x) = 0

\(=>-5x+30=0\Rightarrow-5x=-30\Rightarrow x=6\)

cho E(x) = 0

\(=>x^2-81=0\Rightarrow x^2=81=>\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

cho C(x) = 0

\(=>2x+\dfrac{1}{3}=0=>2x=-\dfrac{1}{3}=>x=-\dfrac{1}{6}\)

13 tháng 4 2022

bạn tham khảo hai câu này  nha vì mình ko biết là mấy câu còn lại

B(x)=-5x+30

cho B(x)=0

=> -5x+30=0

-5x=-30

x=-30:(-5)

x=-6

* Vậy nghiệm của đa thức B(x) là -6.

C(x)=2x+1/3

cho C(x)=0

=>2x+1/3=0

2x=-1/3

x=-1/3:2

x=-1/6

vậy nghiệm của đa thức C(x) là -1/6.

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)