α

A=(sinα+cos...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

11 tháng 9 2015

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

17 tháng 8 2016

a/ \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2=2\left(sin^2\alpha+cos^2\alpha\right)=2\)

b/ \(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cotg^2\alpha\right)\left(1-cos^2\alpha\right)\)

\(=\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)\left(1-sin^2\alpha\right)-\left(1+\frac{cos^2\alpha}{sin^2\alpha}\right)\left(1-cos^2\alpha\right)\)

\(=\frac{1}{cos^2\alpha}.cos^2\alpha-\frac{1}{sin^2\alpha}.sin^2\alpha=1-1=0\)

11 tháng 9 2015

A = \(\left(sin^2a+cos^2a\right)^2=1^2=1\)

D = \(sin^2\left(sin^2B+cos^2B\right)+cos^2a=sin^2a+cos^2a=1\)

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

20 tháng 7 2016

\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)

19 tháng 8 2016

1-sin2α=cos2α

 

b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔADC\(\sim\)ΔBEC

12 tháng 8 2016

A B C c b a

Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a 

a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)

\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)

\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)

b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)

26 tháng 10 2017

\(\sin^4a.\left(3-2\sin^2a\right)+\cos^4a\left(3-2\cos^2a\right)\)

\(=3\sin^4a-2\sin^6a+3\cos^4a-2\cos^6a\)

\(=3\left(\sin^4a+\cos^4a\right)-2\left(\sin^6a+\cos^6a\right)\)

\(=3\left(\left(\sin^2a\right)^2+\left(\cos^2a\right)^2\right)-2\left(\left(\sin^2a\right)^3+\left(\cos^2a\right)^3\right)\)

\(=3.1-2\left(sin^2a+\cos^2a\right)\left(\sin^4-sin^2.\cos^2+\cos^4\right)\)

\(=3-2.1\left(\left(\sin^2a\right)^2+\left(\cos^2a\right)^2\right).\left(-\sin^2.\cos^2\right)\)

\(=3-2\left(-\sin^2.\cos^2\right)\)