Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C c b a
Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a
a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)
\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)
\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)
b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)
27>25>0
→\(\sqrt{27}\)>\(\sqrt{25}\)
\(\sqrt{27}\)>5
6>4>0
\(\sqrt{6}\)>\(\sqrt{4}\)
\(\sqrt{6}\)>2
\(\sqrt{27}\)+\(\sqrt{6}\)>2+5→\(\sqrt{27}\)+\(\sqrt{6}\)>7
0<48<49→\(\sqrt{48}\)<\(\sqrt{49}\)→\(\sqrt{48}\)<7
Từ đó suy ra \(\sqrt{27}\)+\(\sqrt{6}\)>\(\sqrt{48}\)
a) Mình nghĩ là cos a = cot a . sin a chứ :))
CM nà :
Ta có : cot a = \(\frac{AB}{AC}\)(1)
\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)cot a = \(\frac{cosa}{sina}\)
\(\Leftrightarrow\)cos a = cot a . sin a
b) Ta có : tan a = \(\frac{AC}{AB}\)
Lại có : cot a = \(\frac{AB}{AC}\)
\(\Rightarrow\)cos a . tan a = \(\frac{AC.AB}{AB.AC}\)= 1
Vậy ...
a) \(\frac{4x}{\sqrt{7x-6}}+\frac{4\sqrt{7x-6}}{x}=8\) Đặt \(\frac{x}{\sqrt{7x-6}}=t\left(ĐK:t\ge0\right)\Leftrightarrow\frac{1}{t}=\frac{\sqrt{7x-6}}{x}\\ Pt\Leftrightarrow4t+\frac{4}{t}=8\Leftrightarrow4t^2+4-8t=0\Leftrightarrow t=1\left(tm\right)\)
Với
\(t=1\Leftrightarrow\frac{x}{\sqrt{7x-6}}=1\Leftrightarrow x=\sqrt{7x-6}\Leftrightarrow x^2=7x-6\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=1\end{array}\right.\)
Vậy \(s=\left\{1;6\right\}\)
Lời giải:
a)
Góc $a$ nhọn nên $\cos a,\sin a>0$
\(\cos a-\sin a=\frac{1}{5}(1)\Rightarrow (\sin a-\cos a)^2=\frac{1}{25}\Leftrightarrow \sin ^2a+\cos ^2a-2\sin a\cos a=\frac{1}{25}\)
\(\Leftrightarrow 1-2\sin a\cos a=\frac{1}{25}\Rightarrow 2\sin a\cos a=\frac{24}{25}\)
\(\Rightarrow (\sin a+\cos a)^2=\sin ^2a+\cos ^2a+2\sin a\cos a=1+\frac{24}{25}=\frac{49}{25}\)
\(\Rightarrow \sin a+\cos a=\frac{7}{5}(2)\)
Từ \((1);(2)\Rightarrow \cos a=\frac{4}{5}; \sin a=\frac{3}{5}\)
\(\Rightarrow \cot a=\frac{\cos a}{\sin a}=\frac{4}{5}:\frac{3}{5}=\frac{4}{3}\)
b) Tam giác $ABC$ vuông tại $C$ nên $A,B$ là góc nhọn. Khi đó các thông số lượng giác của nó dương.
\(\cos A=\frac{AC}{AB}=\frac{5}{13}\)
\(\cos ^2A+\sin ^2A=1\Rightarrow \sin ^2A=1-\cos ^2A=1-(\frac{5}{13})^2\)
\(\Rightarrow \sin A=\frac{12}{13}\)
\(\cot A=\frac{\cos A}{\sin A}=\frac{5}{13}:\frac{12}{13}=\frac{5}{12}\)
\(\Rightarrow \tan B=\frac{AC}{BC}=\cot A=\frac{5}{12}\)