\(\frac{3}{4}\)lớn hơn hoặc bằng - a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

16 tháng 4 2020

\(\frac{a^2+b^2}{2}\ge ab\)(1)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2+b^2-2ab\ge0\)

<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì 

Vậy (1) đúng với mọi a, b  bất kì

1 tháng 2 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\)(\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)).\(\frac{1}{3}\ge\)\(\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\)\(\left(\frac{a+b+c}{3}\right)^2\)(đpcm)

Dấu "=" xảy ra khi a = b = c

13 tháng 9 2020

            Bài làm :

Áp dụng bất đẳng thức Cauchy Schwarz dạng Engel ta có:

\(\frac{a^2+b^2+c^2}{3}=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\right).\frac{1}{3}\ge\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\left(\frac{a+b+c}{3}\right)^2\)

Dấu "=" xảy ra khi a = b = c

28 tháng 4 2017

\(\frac{a^2}{b+c}\)+\(\frac{b+c}{4}\)=\(\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\)>=\(\frac{4a\left(b+c\right)}{4\left(b+c\right)}\)=a (b,c>0)

chứng minh tương tự ta có:\(\frac{b^2}{a+c}\)+\(\frac{c+a}{4}\)>=b

tương tự:\(\frac{c^2}{a+b}\)+\(\frac{a+b}{4}\)>=c

Cộng từng vế bất đẳng thức trên là được nha.Có gì ko hiểu thì hỏi mình