K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

troi lanh em khong cha loi duoc

ấn vào ô báo cáo

25 tháng 2 2022

Tối quá, ko thấy bài đâu 

HT

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

19 tháng 3 2019

Ta có : \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ac+c^2}=\sqrt{\left(b+a\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(c+b\right)}\)

\(\le\frac{a+c+b+c}{2}+\frac{a+b+b+c}{2}+\frac{a+c+a+b}{2}=2\left(a+b+c\right)\)

( áp dụng BĐT Cô - si cho các số a ; b ; c dương )

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab+bc+ac=1\\a+c=b+c=a+b\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy ...

26 tháng 4 2022
a) Dễ thấy \(\widehat{AMC}=90^o\) Xét (O) có đường kính AB \(\Rightarrow\) \(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn. \(\Rightarrow\widehat{ANB}=90^o\) hay \(\widehat{ANC}=90^o\) Tứ giác ANCM có \(\widehat{AMC}+\widehat{ANC}=90^o+90^o=180^o\) \(\Rightarrow\) Tứ giác ANCM nội tiếp \(\Rightarrow\) 4 điểm A, M, C, N cùng thuộc 1 đường tròn. b) Vì AB là đường kính của (O) \(\Rightarrow sđ\stackrel\frown{AB}=180^o\) Mà I là điểm chính giữa của cung AB \(\Rightarrow sđ\stackrel\frown{IA}=\dfrac{sđ\stackrel\frown{AB}}{2}=\dfrac{180^o}{2}=90^o\) Lại có \(\widehat{ANI}\) là góc nội tiếp chắn \(\stackrel\frown{IA}\) \(\Rightarrow\widehat{ANI}=\dfrac{1}{2}sđ\stackrel\frown{IA}=\dfrac{1}{2}.90^o=45^o\) hay \(\widehat{ANM}=45^o\) Mặt khác, tứ giác ANCM nội tiếp \(\Rightarrow\widehat{ANM}=\widehat{ACM}\) Mà \(\widehat{ANM}=45^o\Rightarrow\widehat{ACM}=45^o\) Lại có \(\Delta ACM\) vuông tại M \(\Rightarrow\Delta ACM\) vuông cân tại M \(\Rightarrow AM=CM\) c) Kẻ đường kính ID của (O)  Ta có \(MN=IN-IM\) Mà IN là dây cỏa (O) nên hiển nhiên \(IN\le ID\), nhưng do IN không đi qua O nên \(IN< ID\) (1) Dễ dàng chứng minh \(IO\perp AB\) tại O, do đó \(\Delta IOM\) vuông tại O \(\Rightarrow IM>IO\) (không xảy ra dấu "=" vì M không trùng với O) \(\Rightarrow-IM< -IO\) (2) Từ (1) và (2) \(\Rightarrow IN-IM< ID-IO\Leftrightarrow MN< OD=R\) Vậy ta có đpcm.  
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

10 tháng 8 2018

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)

Nhân hai vế của phương trình với \(a+b>0\) ta có:

\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:

\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)

\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)

\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)