K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(M=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt y = x2 + 4,5x - 8, ta có:

\(M=4\left(y-2,5x\right)\left(y+2,5x\right)+25x^2\)

\(=4y^2-25x^2+25x^2=4y^2\ge0\forall x\in R\)

Tóm lại, M không có giá trị âm (đpcm)

11 tháng 6 2018

M=4(x - 2)(x - 1)(x + 4)(x + 8) + 25x2

M=4 ( x - 2 )( x  +  4 ).( x  -  1 )( x  +  8 )+ ( 5x )2

M=4 ( x2 + 2x - 8 )( x+ 7x - 8 ) + ( 5x )2 (1)

Đặt t = x+ 7 x - 8, khi đó (1) trở thành:

M=4( t - 5x ).t + ( 5x )2

M=4t - 20tx + ( 5x )2

M=( 2t - 5x )2

Thay t = x+ 7x - 8 ta được: M= (2x2 +  9x - 16)2  >= 0

Vậy M luôn không có giá trị âm.

4 tháng 9 2018

\(M=4\left(x-2\right)\left(x-1\right)\left(x+4\right)\left(x+8\right)+25x^2=4\left[\left(x-1\right)\left(x+8\right)\right]\left[\left(x-2\right)\left(x+4\right)\right]+25x3\)

\(M=4\left(x^2+7x-8\right)\left(x^2+2x-8\right)+\left(5x\right)^2\)

Đặt \(a=x^2+7x-8\Rightarrow x^2+2x-8=a-5x\)

\(\Rightarrow M=4a\left(a-5\right)+\left(5x\right)^2=\left(4a\right)^2-20a+\left(5x\right)^2=\left(4a-5x\right)^2\)

Thế \(a=x^2+7x-8\) vào , ta được :

\(M=\left(2a^2+9x-16\right)^2\)

4 tháng 9 2018

Bạn Võ Thạch Đức Tín giải đúng nhưng sai một vài chỗ rồi, mình sửa lại nha.

Dòng thứ hai từ trên xuống : 25x3 sửa thành 25x2

Dòng thứ năm từ trên xuống : 4a ( a - 5 ) thành 4a.( a - 5x ), ( 4a )2 thành ( 2a ) 2 và - 20x thành -20ax 

=> M =  4a.( a - 5 ) + ( 5x ) 2 = ( 2a ) 2 - 20x + ( 5x )2 = ( 2a - 5x )2 

Vì chỗ này sai nên kết quả phải sửa lại thành :

M =  ( 2x2 + 14x  - 16 - 5x )2

    = ( 2x2 + 9x - 16 )2

Tìm ra được đến đây rồi nhưng bạn chưa chứng minh được M không âm

Bổ sung

Vì ( 2x2 + 9x - 16 )2 > 0 với mọi x

=> M > 0

Vậy M luôn không âm

25 tháng 6 2019

\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)

\(=\frac{15}{24}x^8y^6\ge0\) với \(\forall x,y\)

25 tháng 6 2019

TL:

=\(\frac{-3}{4}x^6y^2.\frac{-5}{6}x^2y^4\) 

 =\(\frac{5}{8}x^8y^6\) 

\(\frac{5}{8}x^8y^6\ge0\forall x\in R\) 

vậy.....

hc tốt

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix} x^4-1\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (1-x^2)(1+x^2)\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\)

\(\Leftrightarrow 1-x^2\neq 0\) (do \(1+x^2>0\) với mọi x)

\(\Leftrightarrow (1-x)(1+x)\neq 0\Leftrightarrow x\neq \pm 1\)

b.

\(P=\frac{2}{(x^2-1)(x^2+1)}+\frac{1}{x^2-1}=\frac{2}{(x^2-1)(x^2+1)}+\frac{x^2+1}{(x^2-1)(x^2+1)}=\frac{x^2+3}{(x^2-1)(x^2+1)}\)

$P$ vẫn nhận giá trị dương với $x=3,4,5,...$ nên bạn xem lại đề.

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)