Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
Đề bài bị sai, ví dụ với \(\left(a;b;c\right)=\left(1;2;3\right)\) thì \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\) chia hết cho 5 nhưng \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\) ko chia hết cho 5
Thay \(\left(a,b,c\right)=\left(2,5,10\right)\) vao gt ta thay ko thoa man
Sua lai de : CMR \(a^3+b^3+c^3-3abc⋮a+b+c\)
CM:
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)⋮\left(a+b+c\right)\)
Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5
Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5
Nếu \(a+b\) ko chia hết cho 5:
- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)
- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:
+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)
+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)
+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)
\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5
\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)
Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)