Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)
mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> \(a\left(a-1\right)\left(a+1\right)⋮6\)
tương tự : \(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
=> (*) chia hếtcho 6
\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6
mà theo bài ra ta có: \(a+b+c⋮6\)
nên \(a^3+b^3+c^3⋮6\) => đpcm
a,b,c là số nguyên,do đó: \(a^3+b^3+c^3⋮9\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮9\)
Ta có: \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\Leftrightarrow\left(a+b+c\right)⋮3\)
\(\Leftrightarrow\left(a+b+c\right)^3⋮9\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\)
Từ đó suy ra tồn tại 2 trong 3 số có tổng chia hết cho 3, suy ra số còn lại cũng chia hết cho 3
Vậy \(abc⋮3\)
Ta có:
\(a^3+b^3+c^3-a-b-c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c-1\right)⋮3\)
mà \(a^3+b^3+c^3⋮9\Rightarrow a^3+b^3+c^3⋮3\)
=> \(a+b+c⋮3\)
Do đó: \(a^3+b^3+c^3-3\left(abc\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b+c\right)\right]\)\(⋮9\)
=> \(3abc⋮9\)=> \(abc⋮3\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
Theo đề bài \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\)
\(\Rightarrow\frac{c+a+b}{abc}=0\) mà \(a;b;c\ne0\Rightarrow abc\ne0\Rightarrow a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=-\left(a^3+b^3+c^3\right)\)
Mà \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) chia hết cho 3 nên \(-\left(a^3+b^3+c^3\right)\) chia hết cho 3
Nên \(a^3+b^3+c^3\) chia hết cho 3
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)
Ta có , vì: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3\)
=> \(1=\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
=> \(a=b=c\)
=>\(abc=a^3\left(đpcm\right)\)
Đặt a/b=x^3, b/c=y^3,c/a=z^3 . Vì a,b,c khác 0 nên x,y,z khác 0.
Ta có x^3.y^3.z^3=a/b.b/c.c/a=1 => (xyz)^3=1 => xyz=1 => x^3 +y^3 +z^3 =3xyz <=> x^3+y^3+z^3-3xyz=0
=> (x+y)^3 + z^3 -3xy(x+y) - 3xyz =0 <=> (x+y+z)[(x+y)^2 -(x+y)z + z^2 ] -3xy(x+y+z) =0 =>(x+y+z)(x^2+y^2+z^2+2xy-3xy-xz-yz)=0
Vi x,y,z khác 0 nên x^2+y^2+z^2-xy-yz-xz=0 => 2x^2+2y^2+2z^2-2xy-2yz-2xz=0 => (x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)=0
<=> (x-y)^2+(y-z)^2+(x-z)^2=0 => x-y=0 ;y-z=0 ; x-z=0 => x=y=z => x^3=y^3=z^3 => a/b=b/c=c/a => a=b=c => abc=a^3=b^3=c^3
Vậy tích abc lập phương của 1 số nguyên
Thay \(\left(a,b,c\right)=\left(2,5,10\right)\) vao gt ta thay ko thoa man
Sua lai de : CMR \(a^3+b^3+c^3-3abc⋮a+b+c\)
CM:
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)⋮\left(a+b+c\right)\)