Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.
b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.
c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)
Tương tự, ta được: EM = (1/2)DC (2)
Từ (1) và (2) Þ DC = 4DI
Bài 3. Cho tam giác
ABC
. Trên cạnh
AC
lấy điểm
N
sao cho
2
5
CN
AN
. Trên cạnh BC lấy điểm
M
sao cho
BC xMC
và MN // AB.
Tìm x.
A. 5 B. 2,5 C. 3,5 D. 1,4
Ta thấy: DE song song với BC, N nằm trên DE => ND, NE đều song song với BC.
Áp dụng định lý Thales vào tam giác ABM và AMC, có NB và NC lần lượt song song với MB, MC nên:
\(\hept{\begin{cases}\frac{AN}{AM}=\frac{ND}{MB}\\\frac{AN}{AM}=\frac{NE}{MC}\end{cases}}\Leftrightarrow\frac{ND}{MB}=\frac{NE}{MC}\Leftrightarrow\frac{ND}{NE}=\frac{MB}{MC}\)
(đpcm)
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
b) Vì hai tam giác ở trên bằng nhau nên CD=AM=MB
Vì CD//AM hay CD//MB=> góc DCM=BMC(slt)
Xét tamg iasc MCD và CMB có
BM=CD(cmt)
góc DCM=BMC(cmt)
MC cạnh chung
vậy hai tam giác băng nhau theo trường hợp(c.g.c)
c) Vì tam giác MCD=CMB nên góc DMC=BCM(góc tương ứng)
mà chúng ở vị trí so le trong nên MD//BC hay MN//BC.
và MD=BC, mà MN=1/2MD=> MN=BC/2
Sửa đề: EM=MA
Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC