K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

23 tháng 4 2018

A B C D E H I O M N K d F G x y Q S

Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M 

Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.

Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD

\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB

=> ^SBF=2. ^BDS .

\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét \(\Delta\)OIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

ΔAEC=ΔABD (c.g.c) => EC=BD

ΔEMC=ΔSMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB

=> ^SBF=2. ^BDS .

ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét ΔOIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

25 tháng 12 2018

ta có:AE vuông góc với AC ;AB vuông góc với AF

suy ra: góc AEC=90độ;góc BAF=90đ

mà góc BAC+góc EAB= góc AEC=90đ

góc BAC+góc CAF=góc BAF=90đ

suy ra: góc EAB=góc CAF

xét tam giác AEBvà ACF có:

AE=AC

AB=AF

góc EAB= góc ACF (cmt)

suy ra tam giác AEB=ACF ( C.G.C)

suy ra EB= CF ( cạnh tương ứng)

2 tháng 11 2019

Trần Huyền Trang ???