Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 3 :
\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)
Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)
Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đến đây ta cần chứng minh : \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)
=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)
Có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)
=> \(a+b+c\ge3=2+1\ge2+abc\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
![](https://rs.olm.vn/images/avt/0.png?1311)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
![](https://rs.olm.vn/images/avt/0.png?1311)
mình biết nè
ta đặt A= \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}+\frac{b^2}{b^2}\)
áp dụng bất đẳng thức svác sơ ta có
A=\(\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}+\frac{b^2}{b^2}>=\)\(\frac{\left(a+2b+c\right)^2}{ab+bc+ca}=\frac{\left(a+2b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
=\(\frac{\left(a+b\right)^2+\left(b+c\right)^2+2\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}\) =\(\frac{a+b}{b+c}+\frac{b+c}{a+b}+2\)
=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1>=\frac{a+b}{b+c}+\frac{b+c}{a+b}+2\)
=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>=\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
có gì giúp mình mấy câu phương trình vô tỉ nhé chúc bạn học và thi tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)
Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)
Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)
Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)
\(\Rightarrow 1-a^{1-a}\geq 0\)
\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)
\(\Rightarrow a^a\geq a\)
Tương tự: \(b^b\geq b\)
\(\Rightarrow a^ab^b\geq ab\) (đpcm)
Bài 2:
Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)
\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)
\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)
\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)
Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)
Tức là \(a-b; 3^a-3^b\) luôn cùng dấu
\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)
\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)
Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)
Do đó $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a ) chuyển vế => đpcm
câu b) nhân 2 vế vs 2 rồi chuyển vế => đpcm
câu c) chuyển vế pt đa thức thành nhân tử ( cái này lớp 8 đã pt rồi)=> đpcm
a)Cách 1: \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (BĐT luôn đúng)
Cách 2: Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
Tương tự: \(\left(a-1\right)^2\ge0\Rightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\)
\(\left(b-1\right)^2\ge0\Rightarrow b^2-2b+1\ge0\Rightarrow b^2+1\ge2b\)
Cộng vế theo vế ta được: \(a^2+b^2+a^2+1+b^2+1\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
a,\(\frac{a^2}{2}+\frac{b^2}{2}>=2\sqrt{\frac{a^2b^2}{2.2}}\left(cosi\right)=ab\) (1)
\(\frac{a^2+1}{2}>=\frac{2a}{2}=a\)(2)
\(\frac{b^2+1}{2}>=\frac{2b}{2}\)(3)
cong (1),(2),(3)=>dpcm
b , a+b+c=0=>a+b=-c
ta co : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc\)