K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2015

=a2-a-(a2+5a+6)

=a2-a-a2-5a-6

=-6a-6=6(-a-1) luôn chia hết cho 6

vậy...

12 tháng 10 2014

\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)

ta có:

(a+1).a.(a-1) chia hết cho 6

(a+1).(a+3).a+2) chia hết cho 6.

(3 số tự nhiên liên kề thì chia hết cho 6);

suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6

26 tháng 12 2014

a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6

Câu b) tương tự.

1 tháng 9 2019

1) a, Chứng minh a^5-a chia hết cho 5

b, Chứng minh a^7-a chia hết cho 7

1 tháng 9 2019

Phạm Lý câu tl này là bỏ.

Câu 1 mik gửi link r đs

7 tháng 11 2019

1) a2(a+1)+2a(a+1)

=(a+1)(a2+2a)

=(a+1)(a2+2a+1-1)

=(a+1)[(a+1)2-12]

=(a+1)(a+1-1)(a+1+1)

=a(a+1)(a+2)

Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.

=> a(a+1)(a+2)\(⋮\)2.3=6

=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)

8 tháng 11 2019

thank bạn

12 tháng 6 2018

1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)

\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)

Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)

2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)

Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6 

Mà 24 chia hết cho 6

=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho

3/  giống bài 2 

4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6

5 tháng 8 2018

1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)

\(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)

\(\Rightarrow n^3+11n⋮6\)

2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)

\(\Rightarrow n^3-19n⋮6\)

15 tháng 9 2019

1)Ta có: n^3 + 11n

= n^3 +n^2 -n^2 -n+12n

= n^2(n+1) -n(n+1) +12n

= (n+1)(n^2-n) +12n

= (n+1)n(n-1) +12n

Vì (n+1)n(n-1) là 3 số tự nhiên liên tiếp nên

(n+1)n(n-1) chia hết cho 6

12n chia hết cho 6 với mọi n

=> n^3 + 11n chia hết cho 6 với mọi n

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

5 tháng 12 2018

Ta có:

2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)

 a có dạng: 3k;3k+1;3k+2 (k E N)

+) a=3k => tổng trên chia hết cho 3

+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1

=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)

+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)

Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)

b, tương tự

5 tháng 12 2018

thôi shitbo ko biết đừng trả lời hộ mình 

a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\left(a^2+2a\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :

+) chắc chắn có một số chia hết cho 2 (1)

+)chắc chắn có một số chia hết cho 3 (2)

Mà ƯC(2;3) = 1

Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)