\(a^5+b^5\ge2\) biết \(a+b=2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

30 tháng 7 2017

Có :

\(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)     (sửa lại đề)

\(\Rightarrow a^2+5\ge2.\sqrt{a^2+4}\)

\(\Rightarrow\left(a^2+5\right)^2\ge4.\left(a^2+4\right)\)

\(\Rightarrow a^4+10a^2+25\ge4.a^2+16\)

\(\Rightarrow a^4+6a^2+9\ge0\)

\(\Rightarrow\left(a^2+3\right)^2\ge0\)  (Cái này đúng)

=> BĐT cần chứng minh là đúng .

30 tháng 7 2017

đề sai rồi, giả sử a=0 thì \(\frac{a^2+5}{\sqrt{a^2}+4}=\frac{5}{4}=1,25< 2\) 

26 tháng 8 2017

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1^2+1^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2.1+b^2.1\right)\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Áp dụng bất đẳng thức Bunhiacopxki lần nữa ta có :

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a.1+b.1\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\) (2)

Từ (1) và (2) \(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{2^2}{2}=2\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

26 tháng 8 2017

Có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

<=> \(2x^2+2y^2\ge\left(x+y\right)^2=x^2+2xy+y^2\)

<=> \(x^2-2xy+y^2\ge0\) (đúng)

Vậy \(a^4+b^4\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

dấu "=" xảy ra <=> a = b = 1

NV
4 tháng 7 2020

\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=\frac{\left(a-b\right)^2+2}{a-b}=a-b+\frac{2}{a-b}\ge2\sqrt{\frac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{\sqrt{6}+\sqrt{2}}{2}\\b=\frac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

3 tháng 7 2018

a) \(a+b-2\sqrt{ab}\ge0\)

<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )

=> đpcm

b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)

<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)

<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)

<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)

<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

=> đpcm

3 tháng 7 2018

thanks!!!

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]