K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

Dựa vào tam giác paxcan nha bạn!!

9 tháng 6 2015

dang can cm mà MAI HUONG

29 tháng 6 2017

b, ta có a3+ b3 = (a+b)(a2-ab +b2)

= (a+b)(a2 -ab +b2 -ab +ab)

= (a+b) ( a2-2ab +b +ab)

=(a+b) [ (a2-b2) +ab ]

vậy ...........................

29 tháng 6 2017

câu a bạn sai đề à

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

4 tháng 10 2020

a/

24 tháng 9 2015

 

1/

\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)

2/

\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

3/

\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)

\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

15 tháng 7 2017

\(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\) 

\(=a^3+b^3+a^3-b^3=2a^3\Rightarrowđpcm\)

2 tháng 9 2020

a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2

b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3

c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3

e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3

g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2

31 tháng 8 2015

VT = ( a + b )(a^2 - ab + b^2) + ( a-  b)(a^2 + ab + b^2) 

    = a^3 + b^3 + a^3 - b^3

     = 2a^3 

    =VP

=> ĐPCM 

21 tháng 8 2017

a, \(VT=\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-a^2+2ab-b^2\)

\(=4ab=VP\)

\(\Rightarrowđpcm\)

b, \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)\)

\(=a^3+b^3=VT\)

\(\Rightarrowđpcm\)