Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có aaa = 100a+10a+a = 111.a = 37.3.a chia hết cho 3
Tick nha?
a) aaa = 111a = 3.37a chia hết cho 3
b) aaa chia hết cho 9 nên có dạng 9k.Ta có : aaa = 9k => 3.37a = 3.3k => 37a = 3k nên 37a chia hết cho 3 mà 37 ko chia hết cho 3
=> a chia hết cho 3 mà 0 < a < 10 => a = 3 ; 6 ; 9
a, aaa = 100a . 10a . 1a = 100 . 10 . 1 . a . a . a = 111 . 3a
+ 111 chia hết cho 3 và 3a chia hết cho 3
Vậy 111.3a chia hết cho 3
b, Gía trị của aaa là 999 hoặc 666 hoặc 333
1.Ta có: aaa=a.111=a.37.3 chia hết cho 3.
=>ĐPCM
2.Để aaa=a.111=a.37.3 chia hết cho 9=3.3
=>a.37 chia hết cho 3
mà (37,3)=1
=>a chia hết cho 3
=>a=Ư(3)=(3,6,9)
Vậy a=3,6,9
3.Ta có: a:3(dư 1)=>a=3m+1
b:3(dư 2)=>b=3n+2
=>a.b=(3m+1).(3n+2)=3m.(3n+2)+3n+2=3.(m.(3n+2)+n)+2
=>a.b:3(dư 2)
10.Thiếu dữ kiện về c.
11.Gọi số cần tìm là n.
Để n chia hết cho 3 và 9=>n chia hết cho 9.
Để n chia hết cho 5 và 25=>n chia hết cho 25.
=>n chia hết cho 2,9,11,25
mà (2,9,11,25)=1
=>n chia hết cho 2.9.11.25=4950
mà n nhỏ nhất
=>n=4950
Ta có: n3 + 5n + aaa + 1954 - 9a = ( n3 - n + 6n ) + a.( 111 - 9 ) + 1954
= [ n.( n2 - 1 ) + 6n ] + 102a + 1954
= [ n.( n2 - n + n - 1 ) + 6n ] + 102a + 1954
= { n.[ ( n2 - n ) + ( n - 1 ) + 6n ] + 102a + 1954
= { n.[ n.( n - 1 ) + 1.( n - 1 ) + 6n ] + 102a + 1954
= [ n.( n + 1 ).( n - 1 ) + 6n ] + 102a + 1954
= n.( n + 1 ).( n - 1 ) + 6n + 102a + 1954
*Nhận xét:
- Ta có: n ; n + 1 ; n - 1 là ba số nguyên liên tiếp
Nên trong ba số trên có ít nhất một số chia hết cho 3 và một số chia hết cho 2
Suy ra n.( n + 1 ).( n - 1 ) chia hết cho cả 2 và 3
Do đó n.( n + 1 ).( n - 1 ) chia hết cho 6 ( 1 )
- Ta có: 6n chia hết cho 6 ( 2 )
- Ta có: 102 chia hết cho 6
Suy ra 102a chia hết cho 6 ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra n.( n + 1 ).( n - 1 ) + 6n + 102a chia hết cho 6
Hay n3 + 5n + aaa - 9a chia hết cho 6
Mà 1954 chia 6 dư 4
Vậy n3 + 5n + aaa + 1954 - 9a chia 6 dư 4
*Lưu ý: Bài viết thuộc quyền sở hữu của Nguyễn Văn Hưởng Corporation.
Vui lòng không re-upload lại bài viết dưới mọi hình thức.
Ta có:
a000...000 ( n số 0) = a.1000...0000(n số 0)
= a . (99999...999 +1) (n số 9)
= a . 99999...999 ( n số 9) + a
Ta thấy:
a . 9999...999 (n số 9) : 9 = a . 1111...11(n số 1) = aaaaa...aaa(n số a)
=> a . 999..999( n số 9) + a chia 9 sẽ được aaaaa...aaaa(n số a) và dư a
Hay a000..0000 (n số 0) : 9 = aaaaaa...aaa (n số a) (dư a)