Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta tách 2/5x7 = 2/5-2/7 tách những cái kia tương tự góp vào rồi tính
Ta có : +) A= 1/5 -1/7 +1/7 -1/12 +1/12 - 1/19 +1/19 - 1/28 +1/28 - 1/39 +1/30.40 ⇔ A=1/5 -1/39 +1/30.40
+) B= 2.(1/5.8 +1/8.11 +1/11.14 +1/14.17 + 1/17.20 )
⇔B=2. 1/3.(1/5 - 1/8 +1/8 - 1/11 +1/11- 1/14 +1/14 -1/17 +1/17 -1/20 )
⇔B=2/3.( 1/5-1/20 ) Ta luôn có :B luôn <1/5 - 1/20
Mà 1/5 -1/20 <1/5 -1/39 +1/30.40 =A
⇒ A>B (dpcm) Tích mình với nha bn .
Câu C giải rồi
\(B=\dfrac{1}{5}+\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+\dfrac{1}{119}+\dfrac{1}{170}+\dfrac{1}{230}+\dfrac{1}{299}\)
\(=2\left(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}+\dfrac{1}{460}+\dfrac{1}{598}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+\dfrac{3}{20.23}+\dfrac{3}{23.26}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{23}-\dfrac{1}{26}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{26}\right)=\dfrac{4}{13}\)
\(\dfrac{1}{5}+\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+\dfrac{1}{119}+\dfrac{1}{170}+\dfrac{1}{230}+\dfrac{1}{299}\)
=\(\dfrac{2}{10}+\dfrac{2}{40}+\dfrac{2}{88}+\dfrac{2}{154}+\dfrac{2}{238}+\dfrac{2}{340}+\dfrac{2}{460}+\dfrac{2}{598}\)
=\(\dfrac{1}{3}.2\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+\dfrac{3}{20.23}+\dfrac{3}{23.26}\right)\)
=\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}\right)\)
=\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{26}\right)\)
=\(\dfrac{2}{3}.\dfrac{6}{13}\)
=\(\dfrac{4}{13}\)
a)A=\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{5}+\dfrac{3}{5}\right)+\left(\dfrac{5}{7}-\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(\dfrac{-11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
A=0+0+0+...+0+\(\dfrac{13}{15}\)
A=\(\dfrac{13}{15}\)
b) Ta có: \(-\dfrac{1}{9\cdot10}-\dfrac{1}{8\cdot9}-\dfrac{1}{7\cdot8}-...-\dfrac{1}{2\cdot3}-\dfrac{1}{1\cdot2}\)
\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(1-\dfrac{1}{10}\right)=\dfrac{-9}{10}\)
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
N=1/2+1/22+...+1/210
2N=1+1/2+...+1/29
2N-N=1-1/210=1-1/1024=1023/1024
Giải:
N=1/2+1/22+1/23+...+1/29+1/210
2N=1+1/2+1/22+...+1/28+1/29
2N-N=(1+1/2+1/22+...+1/28+1/29)-(1/2+1/22+1/23+...+1/29+1/210)
N=1-1/210=1023/1024
Chúc bạn học tốt!
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
Đây nha bạn:
A=5.72+7.125+12.197+19.289+28.3911+39.401
=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40=5.77−5+7.1212−7+12.1919−12+19.2828−19+28.3939−28+39.4040−39
=15−17+17−112+112−119+119−128+128−139+139−140=51−71+71−121+121−191+191−281+281−391+391−401
=15−140=740=