Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5n-7\right)^2-9\)
\(=\left(5n-7\right)^2-3^2\)
\(=\left(5n-7-3\right)\left(5n-7+3\right)\)
\(=\left(5n-10\right)\left(5n-4\right)\)
\(5\left(n-2\right)\left(5n-4\right)⋮5\)với mọi số nguyên n \(\left(đpcm\right)\)
a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)
*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)
\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)
Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9
*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3
Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9
Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)
b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)
*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)
\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)
Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169
*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13
Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169
Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)
a) G/s phản chứng \(n^2+7n+22⋮9\)
=> \(n^2+4n+4+\left(3n+18\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)
=> \(\left(n+2\right)^2⋮3\)
=> \(\left(n+2\right)^2⋮9\)
Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\)
=> \(3n⋮9\)
=> \(n⋮3\)
Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3
=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9
=> Điều giả sử là sai
=> TA CÓ ĐPCM
a) Đề sai, phải là 384 mới đúng
Đặt \(A=n^4-10n^2+9\)
\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^2-9\right)\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ nên n = 2k + 1 ( k thuộc Z )
Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)
A = 16k( k + 1)( k - 1)( k + 2)
Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3
=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8
=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)
=> A chia hết cho 16.24 = 384 ( Đpcm )
Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)
b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9
=> 10n + 18n + 9 không chia hết cho 27
Ta có:
(5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.
Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ
Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Ta có: \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
\(=25n^2+20n\)
Nx: \(25n^2⋮5\)với mọi \(n\inℤ\)
\(20n⋮5\)với mọi \(n\inℤ\)
\(\Rightarrow25n^2+20n⋮5\)với mọi \(n\inℤ\)
Vậy \(\left(5n+2\right)^2-4⋮5\)với mọi số nguyên n
\(\left(5n+2\right)^2-4=25n^2+10n+4-4=25n^2+10n\)
-Mà: \(\hept{\begin{cases}25n^2⋮5\\10n⋮5\end{cases}}\Rightarrowđpcm\)
Ta có : (5n + 2)2 – 4
= 25n2 + 20n + 4 - 4
= 25n2 + 20n
= 5(5n2 + 4n) chia hết cho 5
Ta có \(\left(5n+2\right)^2-4\)
=\(25n^2+20n+4-4\)
=\(25n^2+20n\)
=\(5\left(5n^2+4n\right)⋮5\)
(5n-7)^2-49 = (5n-7)2 -72
=(5n-7+7)(5n-7-7)
=5n(5n-14)
=10n2 - 70n
Vậy (5n-7)^2-49 luôn chia hết cho 10 với mọi n là số nguyên