K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

\(4x-10-x^2\)

\(=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4\right)-6\)

\(=-\left(x-2\right)^2-6\)

Vì \(-\left(x-2\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-2\right)^2-6\le-6< 0;\forall x\)

Vậy \(4x-10-x^2< 0\forall x\)

6 tháng 10 2019

Ta có: 4x - 10 - x2

       = - ( x2 - 4x +10 )

       = - ( x2 - 4x + 4 ) - 6

       = - ( x - 2 )2 - 6

Vì - ( x-2 )2 \(\le\)0 với \(\forall x\)

    => - ( x - 2 )2 - 6 < 0 với \(\forall x\)

hay 4x - 10 - x< 0 với \(\forall x\)(đpcm)

( Dấu "=" xay ra <=> x= 2 )

Chúc bn học tốt ^^

14 tháng 8 2016

đây chính là hàm số y = ax +b voi a =1; b = -m2 -1

voi y =0 => x = m2 +1 <0 ( vô nghiệm vì m2 +1 luôn >0 voi moi m)

kl: không có gt m để x<0

14 tháng 8 2016
Đang onl trên đt 21h mk làm cho bạn
25 tháng 8 2020

Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x ) 

25 tháng 8 2020

\(A=\left(2x+1\right)\left(x-1\right)-2x\left(x+2\right)-5\left(-x+3\right)+4\)

\(=2x^2-2x+x-1-2x^2-4x+5x-15+4\)

\(=-12\left(đpcm\right)\)

26 tháng 9 2018

Có: x^2-4x+10=x^2-2*x*2+2^2+6=(x-2)^2+6

(x-2)^2>=0 với mọi x

=> (x-2)^2+6>0 với mọi x

=> x^2-4x+10>0 với mọi x

26 tháng 9 2018

Ta phân tích \(6x\) thành \(2.3x\) và \(10\) thành \(9+1\)

Ta có: 

\(\Leftrightarrow x^2-2.3x+3.3+1\)

Áp dụng hằng đẳng thức thứ 2, ta có:

\(\Leftrightarrow\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\) luôn \(>0\Rightarrow\left(x-3\right)^2+1>0\) mọi \(x\in R\)

6 tháng 10 2019

1) \(\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=\left(x^2-8x+16\right)+1\)

\(=\left(x-4\right)^2+1\)

Vì \(\left(x-4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)

Vậy....

2) tương tự

6 tháng 10 2019

\(1.\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=x^2-2.4x+16+1\)

\(=\left(x-4\right)^2+1\)

Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)

hay \(\left(x-3\right)\left(x-5\right)+2>0\)

7 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho bộ ba số thực không âm gồm có \(x;\)  \(x;\)  \(2y\), khi đó, ta có:

\(x+x+2y\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)   \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(6\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(2\ge\sqrt[3]{2x^2y}\)  \(\Leftrightarrow\)  \(2^3\ge2x^2y\)  \(\Leftrightarrow\)  \(8\ge2x^2y\)  \(\Leftrightarrow\)  \(x^2y\le\frac{8}{2}=4\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x=2y}_{x+y=3}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=1}\)

7 tháng 5 2016

bất đẳng thức này mình chưa học ạ. Đây là đề thi lớp 8. Nếu bạn có cách giải khác thì giải dùm mình. Tks 

22 tháng 8 2020

A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 3x(2x + 11) - 5(2x+  11) - 2x(3x + 7) - 3(3x + 7)

A=  6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)

B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2

= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2

= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)

22 tháng 8 2020

A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7) 

=\(6x^2+23x-55-\left(6x^2+23x+21\right)\) 

=\(6x^2+23x-55-6x^2-23x-21\)  

= -76 

Vậy A không phụ thuộc vào x