Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây chính là hàm số y = ax +b voi a =1; b = -m2 -1
voi y =0 => x = m2 +1 <0 ( vô nghiệm vì m2 +1 luôn >0 voi moi m)
kl: không có gt m để x<0
Đề bài mình viết thiếu là CM biểu thức sau không phụ thuộc vào x ( nghĩa là kết quả phải ra số tự nhiên không có x )
Có: x^2-4x+10=x^2-2*x*2+2^2+6=(x-2)^2+6
(x-2)^2>=0 với mọi x
=> (x-2)^2+6>0 với mọi x
=> x^2-4x+10>0 với mọi x
1) \(\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)
Vậy....
2) tương tự
\(1.\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=x^2-2.4x+16+1\)
\(=\left(x-4\right)^2+1\)
Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)
hay \(\left(x-3\right)\left(x-5\right)+2>0\)
Áp dụng bất đẳng thức \(AM-GM\) cho bộ ba số thực không âm gồm có \(x;\) \(x;\) \(2y\), khi đó, ta có:
\(x+x+2y\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(6\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\ge\sqrt[3]{2x^2y}\) \(\Leftrightarrow\) \(2^3\ge2x^2y\) \(\Leftrightarrow\) \(8\ge2x^2y\) \(\Leftrightarrow\) \(x^2y\le\frac{8}{2}=4\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x=2y}_{x+y=3}\) \(\Leftrightarrow\) \(^{x=2}_{y=1}\)
A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
A = 3x(2x + 11) - 5(2x+ 11) - 2x(3x + 7) - 3(3x + 7)
A= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)
B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2
= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2
= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)
A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7)
=\(6x^2+23x-55-\left(6x^2+23x+21\right)\)
=\(6x^2+23x-55-6x^2-23x-21\)
= -76
Vậy A không phụ thuộc vào x
\(4x-10-x^2\)
\(=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4\right)-6\)
\(=-\left(x-2\right)^2-6\)
Vì \(-\left(x-2\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-2\right)^2-6\le-6< 0;\forall x\)
Vậy \(4x-10-x^2< 0\forall x\)
Ta có: 4x - 10 - x2
= - ( x2 - 4x +10 )
= - ( x2 - 4x + 4 ) - 6
= - ( x - 2 )2 - 6
Vì - ( x-2 )2 \(\le\)0 với \(\forall x\)
=> - ( x - 2 )2 - 6 < 0 với \(\forall x\)
hay 4x - 10 - x2 < 0 với \(\forall x\)(đpcm)
( Dấu "=" xay ra <=> x= 2 )
Chúc bn học tốt ^^