Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a.5^5-5^4+5^3\)
\(=5^3.5^2-5^3.5+5^3.1\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.3.7⋮7\)
\(\)
\(\)
\(\)
Bài 2:
\(a.32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow n=2\)
\(b.9.27\le3^n\le243\)
\(\Rightarrow3^2.3^3\le3^n\le3^5\)
\(\Rightarrow3^5\le3^n\le3^5\)
\(\Rightarrow n=5\)
\(4^{a.b.c.d}=\left(4^a\right)^{bcd}=5^{bcd}=\left(5^b\right)^{cd}=6^{cd}=\left(6^c\right)^d=7^d=8\)
=> \(2^{2abcd}=8=2^3\Rightarrow2abcd=3\Rightarrow abcd=\frac{3}{2}\)
\(TDB:\)
\(4^a=8\Leftrightarrow a=1,5\)
\(5,5^b=8\Rightarrow b=1,219\)
\(6,6^c=8\Rightarrow c=1,101\)
\(7,7^d=8\Rightarrow d=1,018\)
\(\Rightarrow a.b.c.d=1,5\times1,219\times1,101\times1,018=2,049\)
a: |x-2|<=3
=>x-2>=-3 và x-2<=3
=>-1<=x<=5
mà x thuộc A
nên \(x\in\left\{-1;0;1;2;3;4;5\right\}\)
b: |x-3|>5
=>x-3<-5 hoặc x-3>5
=>x>8 hoặc x<-2
mà x thuộc A
nên \(x\in\left\{-10;-9;...;-3;9;10\right\}\)
a, \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
\(KL....\)
b, đề hơi sai pn ạ
c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55
d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
a, 2−1.2n+4.2n=9.25
⇒2n.92 =288
⇒2n=64
⇒n=6
KL....
b, đề hơi sai pn ạ
c, 76+75−74=74(72+7−1)=74.55chia hết cho 55
d, A=1+5+52+53+...+549+550
⇒5A=5+52+53+54+...+550+551
⇒5A−A=551−1
⇒A=551−14
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
a) \(\frac{5}{6}=\frac{-1}{x}\) \(\Leftrightarrow\) 5x = -1 . 6 \(\Leftrightarrow\) x = \(\frac{-6}{5}\) = -1,2
b)\(\frac{-3}{7}=\frac{x}{14}\Leftrightarrow\) -3 . 14 = 7x \(\Leftrightarrow\) x = \(\frac{-3.14}{7}\) = -6
c)\(\frac{x+1}{4}=\frac{-3}{2}\) \(\Leftrightarrow\) 2(x+1) = -3.4\(\Leftrightarrow\) \(x+1=\frac{-3.4}{2}\) = -6 \(\Leftrightarrow\) x = -6 - 1= -7
d) \(\frac{2x-3}{5}=\frac{-6}{7}\) \(\Leftrightarrow\) 2x - 3 = \(\frac{-6.5}{7}\) = \(\frac{-30}{7}\) \(\Leftrightarrow\) 2x = \(\frac{-30}{7}+3\) = \(\frac{-9}{7}\)
\(\Leftrightarrow\) x = \(\frac{-9}{7}:2\) = \(\frac{-9}{14}\)
e) \(\frac{3-5x}{4}=\frac{5}{6}\) \(\Leftrightarrow\) 3-5x = \(\frac{5.4}{6}\) = \(\frac{10}{3}\) \(\Leftrightarrow\) 5x = 3-\(\frac{10}{3}\) = \(\frac{-1}{3}\) \(\Leftrightarrow\) x = \(\frac{-1}{15}\)
f)\(\frac{12}{x}=\frac{-6}{5}\) \(\Leftrightarrow\) x = \(\frac{12.5}{-6}\) = -10
Đặt \(m=3^{4^4},n=4^{\frac{5^6-1}{4}}=2^{\frac{5^6-1}{2}}\)
Khi đó ta có \(m^4=\left(3^{4^4}\right)^4=3^4^{^5};4n^4=4\left(4^{\frac{5^6-1}{4}}\right)^4=4\cdot4^{5^6-1}=4^{5^6}\)
Ta có \(A=m^4+4n^4=\left(m^4+4m^2n^2+4n^4\right)-4m^2n^2=\left(m^2+2n^2\right)^2-\left(2mn\right)^2\)
\(A=\left(m^2+2n^2-2mn\right)\left(m^2+2n^2+2mn\right)\)
\(m^2+2n^2+2mn>m^2+2n^2-2mn\)
\(=\left(m-n\right)^2+n^2\ge n^2=2^{5^6-1}>2^{8064}=\left(2^4\right)^{2016}>10^{2016}\)
Vậy bài toán được chứng minh
a) \(\frac{x+5}{4}\)-\(\frac{2x-5}{3}\)=\(\frac{6x-1}{3}\)+\(\frac{2x-3}{12}\)
⇔\(\frac{3\left(x+5\right)}{12}\)-\(\frac{4\left(2x-5\right)}{12}\)=\(\frac{4\left(6x-1\right)}{12}\)+\(\frac{2x-3}{12}\)
⇒ 3x+15-8x+20=24x-4+2x-3
⇔3x+15-8x+20-24x+4-2x+3=0
⇔-31x+42=0
⇔x=\(\frac{42}{31}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{42}{31}\)}