Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )
=> A = 21^5 - 1 chia hết cho 20
=> A = 21^10 - 1 chia hết 400
=> A= 21^10 - 1 chia hết cho 200
\(17^{25}=17^{24}.17=\left(17^2\right)^{12}.17=....1.17=.....7\)
\(24^4=...6\)
\(13^{21}=13^{20}.13=\left(13^2\right)^{10}.13=...1.13=....3\)
\(\Rightarrow...7+...6-....3=....0\Rightarrow17^{25}+24^4-13^{21}\)chia hết cho 10
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
1) 745 + 744 - 742 = 742(73+72-1) = 391.742 => đpcm
2) 325 + 323 - 321 = 321(34 + 32 - 1) = 321.89 => đpcm
1/ 745+744-742
=>742(73+72-1)
=>742.391
Vì 391\(⋮\)391
=>742.391\(⋮\)391
=>745+744-742\(⋮\)391
(đpcm)
Ta thấy :
\(45^{10}=9^{10}.5^{10}=3^{20}.5^{10}=\overline{...1}.\overline{...5}=\overline{.....5}\) (vì số tận cùng là 3 và 5)
\(5^{40}=\overline{.....5}\) (vì số tận cùng là 5)
\(\Rightarrow45^{10}-5^{40}=\overline{.....0}\)
mà \(25^{20}=5^{40}=\overline{.....5}\) (vì số tận cùng là 5)
\(\Rightarrow45^{10}-5^{40}:25^{20}=\overline{.....0}\)
\(\Rightarrow45^{10}-5^{40}⋮25^{20}\) \(\left(dpcm\right)\)