Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào tam giác AMB vuông tại A, ta có:
\(BM^2=MA^2+AB^2\)
mà \(MA=\frac{1}{2}AC\)Suy ra: \(BM^2=\left(\frac{1}{2}AC^{ }\right)^2+AB^2=\frac{AC^2}{4}+AB^2\)(1)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\Leftrightarrow BC^2=\frac{AC^2}{4}+\frac{3AC^2}{4}+AB^2\)
\(\Leftrightarrow\frac{AC^2}{4}+AB^2=BC^2-\frac{3}{4}AC^2\)(2)
Từ (1) và (2) suy ra \(BM^2=BC^2-\frac{3}{4}AC^2\)
a) Ta có : S = 4 + 42 + 43 + ... + 490
=> 4S = 42 + 43 + 44 + ... + 491
=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)
=> 3S = 491 - 4
=> S = \(\frac{4^{91}-4}{3}\)
b) Khi đó 3S + 4 = 4x + 10
<=> 491 - 4 + 4 = 4x + 10
=> 4x + 10 491
=> x + 10 = 91
=> x = 81
Vậy x = 81
S = 4 + 42 + 43 + ... + 490
Chứng minh chia hết cho 5
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )
= 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )
= 4.5 + 43.5 + ... + 489.5
= 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )
Chứng minh chia hết cho 21
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 488.21
= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )
Tính S
S = 4 + 42 + 43 + ... + 490
4S = 4( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491
4S - S = 3S
= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490
= 491 - 4
\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)
Tìm x
3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )
<=> 491 - 4 + 4 = 4x+10
<=> 491 = 4x+10
<=> 91 = x + 10
<=> x = 81
Bai 2:a)
290=18*5=(25)18=3218
536=518*2=(52)18=2518
Vi 32>25 nen 290>536
a) \(\dfrac{-1}{3}\cdot2\cdot\dfrac{-1}{3}=\left(\dfrac{-1}{3}\right)^2\cdot2=\dfrac{1}{9}\cdot2=\dfrac{2}{9}\)
c) \(\dfrac{8^4}{4^4}=\left(\dfrac{8}{4}\right)^4=2^4=16\)
d) \(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10