K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PT
1
VN
0
PN
1
AJ
0
QH
1
QH
3
NN
5 tháng 1 2016
+) Với n = 1 thì 43 + 33 = 64 + 27 = 91 chia hết cho 13
+) Giả sử biểu thức trên đúng với n = k (k lớn hơn hoặc bằng 1) => 42k + 1 + 3k + 2 chia hết cho 13 thì ta cần chứng minh biểu thức trên đúng với k + 1 tức 42k + 2 + 3k + 3
Thật vậy:
42k + 3 + 3k + 3
= 42k + 1.42 + 3.3k + 2
= 42k + 1.3 + 42k + 1.13 + 3.3k + 2
= 3.(42k + 1 + 3k + 2) + 42k + 1.13
Vì 3.(42k + 1 + 3k + 2) chia hết cho 13 và 42k + 1.13 chia hết cho 13
=> 3.(42k + 1 + 3k + 2) + 42k + 1.13 chia hết cho 13
=> Phép quy nạp được chứng minh
Vậy 42n + 1 + 3n + 2 chia hết cho 13
PH
1
4 tháng 10 2019
Câu hỏi của le hoang minh khoi - Toán lớp 9 - Học toán với OnlineMath
Tách ra