K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Với n=1, bt phải chứng minh chia hết cho 13. Giả sử n=k, 42k+1+3k+2 chia hết cho 13.

Xét n=k+1, 42(k+1)+1+3k+1+2=42k+1.16+3k+2.3=3(42k+1+3k+2)+42k+1.13 chia hết cho3

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

10 tháng 11 2023

Đề sai rồi bạn

10 tháng 11 2023

để tui xem lại nha

10 tháng 2 2018

kho qua

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

5 tháng 1 2016

+) Với n = 1 thì 43 + 33 = 64 + 27 = 91 chia hết cho 13

+) Giả sử biểu thức trên đúng với n = k (k lớn hơn hoặc bằng 1) => 42k + 1 + 3k + 2 chia hết cho 13 thì ta cần chứng minh biểu thức trên đúng với k + 1 tức 42k + 2 + 3k + 3

Thật vậy:

42k + 3 + 3k + 3

= 42k + 1.42 + 3.3k + 2

= 42k + 1.3 + 42k + 1.13 + 3.3k + 2

= 3.(42k + 1 + 3k + 2) + 42k + 1.13

Vì 3.(42k + 1 + 3k + 2) chia hết cho 13 và 42k + 1.13 chia hết cho 13

=> 3.(42k + 1 + 3k + 2) + 42k + 1.13 chia hết cho 13

=> Phép quy nạp được chứng minh

Vậy 42n + 1 + 3n + 2 chia hết cho 13

 

5 tháng 1 2016

Sr nhé, bn thay chỗ Với n = 1 thành với n = 0 nhé rồi sau đó làm tiếp như vậy

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40