Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 32002+32000-22002-22000
= 32000.(32+1)-22000.(22+1)
= 32000.10-22000.5
= 32000.10-21999.10
= 10.(32000-21999) chia hết cho 10
=> 32002 - 22002 + 32000 - 22000 chia hết cho 10 (đpcm).
32002-22002+32000-22000
= ( 32002+32000 ) -( 22002+22000)
= 32000.(32+1) - 22000.(22+1)
= 32000 . 10 -22000 .5
= 32000.10 - 21999.10 = 10.(32000+21999) chia het cho 10
1a, Ta có : 2S=2+2^2+2^3+...+2^51
=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)
=> S = 2^51-1
Vậy S < 2^51
1,b 24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n
= 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|
=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0
Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003
Th1 : 2x ≤ 4003
=> M ≥ 4003-2x ≥ 0
Để m nho nhat thi 2x phai lon nhat
=> 2x=4003=>x=\(\frac{4003}{2}\)
M ≥ 4003-4003=0
Th2 2x ≥ 4003
M ≥ 2x-4003 ≥0
Để M nho nhat thi 2x phai nho nhat
=> 2x=4003=>x=4003/2
M ≥ 4003 -4003=0
Tu 2 truong hop tren ta co GTNN cua M la 0
Xay ra khi x=4003/2
Để M đạt GTNN thì:
|x-2002|+|x-2001|> hoặc = 0
Vì |x-2002|> hoặc = 0
|x-2001|> hoặc = 0
Nếu |x-2002|=0
=>x-2002=0
x=2002+0
x=2002
Thay x=2002 ta có:
|2002-2002|+|2002-2001|
=|0|+|1|
=0+1
=1
=> GTNN của M=1
a) Ta có:
\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)
\(=...5⋮5\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\)
Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)
b) Ta có:
\(4^{2010}+2^{2014}=...6+...4\)
\(=...10⋮10\)
\(\Rightarrow4^{2010}+2^{2014}⋮10\)
Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)
Bài làm:
1) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
2) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
3) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{16}\right)⋮5\)
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
chức năng suy nghĩ của 1 tính toán
Ta có:
\(3^{2002}-2^{2002}+3^{2000}-2^{2000}\)
\(=3^{2002}+3^{2000}-\left(2^{2002}+2^{2000}\right)\)
\(=3^{2000}\left(3^2+1\right)-2^{2000}\left(2^2+1\right)\)
\(=3^{2000}.10-2^{1999}.10=10\left(3^{2000}-2^{1999}\right)⋮10\)
Vậy.....