K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)+3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0

câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)+3b2/2 .a=0 và b=0

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

1<=x<=3

=>(x-1)>=0 và (x-3)<=0

=>(x-1)(x-3)<=0

=>x^2-4x+3<=0

=>x^2+3<=4x

Dấu = xảy ra khi x=1 hoặc x=3

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

25 tháng 12 2020

ảnh đại diện của mình đẹp ko

30 tháng 6 2017

\(-4x^2+2xy-y^2=-3x^2-x^2+2xy-y^2=-3x^2-\left(x^2-2xy+y^2\right)\)

\(=-3x^2-\left(x-y\right)^2\le0\)(đpcm)

Dấu "=" xảy ra <=> x = y = 0

30 tháng 6 2017

Cảm ơn nha

19 tháng 2 2021

\(\left(a+b\right)\left(a^5+b^5\right)=a^6+b^6+a^4+b^4\ge2a^3b^3+2a^2b^2=4\)

dấu = khi a = b = 1

21 tháng 2 2021

Theo giả thiết ta có \(ab=1\)

Sử dụng bđt Cô-si :

\(a+b\ge2\sqrt{ab}=2\)

\(a^5+b^5\ge2\sqrt{a^5b^5}=2\)

Nhân theo vế ta có ngay điều phải chứng minh