K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(-4x^2+2xy-y^2=-3x^2-x^2+2xy-y^2=-3x^2-\left(x^2-2xy+y^2\right)\)

\(=-3x^2-\left(x-y\right)^2\le0\)(đpcm)

Dấu "=" xảy ra <=> x = y = 0

30 tháng 6 2017

Cảm ơn nha

27 tháng 6 2016

câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)+3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0

câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)+3b2/2 .a=0 và b=0

20 tháng 5 2016

BĐT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

20 tháng 5 2016

Nguyễn Huy Thắng Sai tên BĐT

20 tháng 5 2016

(ax+by)\(^{^2}\)\(\le\) (\(a^2\)+\(b^2\))(\(x^2\)+\(y^2\))

<=> \(a^2\)\(x^2\)+2axby+\(b^2\)\(y^2\)\(\le\)\(a^2\)\(x^2\)+\(a^2\)\(y^2\)+\(b^2\)\(x^2\)+\(b^2\)\(y^2\)

<=> 2axby\(\le\)\(a^2\)\(y^2\)+\(b^2\)\(x^2\)

<=>\(a^2\)\(y^2\)-2aybx+\(b^2\)\(x^2\)\(\ge\)0

<=> \(\left(ay-bx\right)^2\)\(\ge\)0(luôn đúng)

dấu = xảy ra khi ay-bx=0 <=> ay=bx

 

20 tháng 5 2016

BDT Bunnhiacopxki

Với mọi số a;b;x;y ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

dấu = xảy ra khi \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

 

11 tháng 8 2015

bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory

25 tháng 8 2016

bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc

20 tháng 10 2015

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

 \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)mà \(1>0\) nên \(\left(x-2\right)+1>0\)

Vậy \(x^2-4x+5>0\)

 

\(6x-x^2-10=-x^2+6x-9-1=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Vì   \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2-1\le-1\)mà \(-1<0\)  Nên  \(-\left(x-3\right)^2-1<0\)

Vậy  \(6x-x^2-10<0\)

15 tháng 6 2018

Vào tìm câu hỏi tương tự thử xem.

Chúc bạn học tốthihi

15 tháng 6 2018

giải ra giùm đi

4 tháng 7 2019

\(2x^2+y^2+2xy-4x+9=\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)+5\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+5\ge5\)

Suy ra dieu phai cm

\(2x^2+y^2+2xy-4x+9\)

\(=x^2+2xy+y^2+x^2-4x+4+5\)

\(=\left(x+y\right)^2+x^2-2.2.x+4+5\)

\(=\left(x+y\right)^2+\left(x-2\right)^2+5\)

\(\left(x+y\right)^2>0;\left(x-2\right)^2>0;5>0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2+5>0\)

\(\Rightarrow2x^2+y^2+2xy-4x+9>0\)