Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bắt quy nạp khó quá, giá đề mở thì xài Ber's ineq cho lẹ .-.
*) Với \(n=1;2\) BĐT đúng
*)Giả sử BĐT đúng với \(n=k\) tức chứng minh BĐT đúng với \(n=k+1\) hay \(\dfrac{a^{k+1}+b^{k+1}}{2}\ge\left(\dfrac{a+b}{2}\right)^{k+1}\)
Ta có: \(VT-VP=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^{k+1}\)
\(=\dfrac{a^{k+1}+b^{k+1}}{2}-\left(\dfrac{a+b}{2}\right)^k\left(\dfrac{a+b}{2}\right)\)
\(\ge\dfrac{a^{k+1}+b^{k+1}}{2}-\dfrac{a^k+b^k}{2}\cdot\dfrac{a+b}{2}\)
\(=\dfrac{\left(a-b\right)\left(a^k-b^k\right)}{4}=\dfrac{\left(a-b\right)\left(a^{k-1}-a^{k-2}b+...+b^{k-1}\right)}{4}\ge0\)
Khi \(a=b\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
\(\Leftrightarrow\left(m-2\right)\left(5m-6\right)< 0\Leftrightarrow\frac{6}{5}< m< 2\)
b/ \(\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\)
Để phương trình có 2 nghiệm có tổng bằng 6
\(\Rightarrow x_1+x_2=6\)
\(\Rightarrow\frac{-2\left(2m-3\right)}{m-2}=6\)
\(\Rightarrow-4m+6=6m-12\)
\(\Rightarrow m=\frac{9}{5}\)
Thay \(m=\frac{9}{5}\) vào biểu thức \(\Delta'\) kiểm tra thấy thỏa mãn, vậy \(m=\frac{9}{5}\)
a)
Phương trình có 2 nghiệm phân biệt :
\(\Delta>0\)
Phương trình có 2 nghiệm trái dấu :
\(x_1x_2< 0\Leftrightarrow\frac{c}{a}< 0\)
Chỉ cần xét \(\frac{c}{a}< 0\)
\(\frac{5m-6}{m-2}< 0\)
\(\Leftrightarrow m\in\left(\frac{5}{6};2\right)\)
b) \(\Delta\ge0\)
\(\Leftrightarrow\left[2\left(2m-3\right)\right]^2-4\left(m-2\right)\left(5m-6\right)\ge0\)
\(\Leftrightarrow-10m+6=0\)\(\Leftrightarrow-4m^2+16m-12\ge0\)
\(\Leftrightarrow1\le m\le3\)
Theo hệ thức viet: \(x_1+x_2=\frac{-b}{a}=\frac{-2\left(2m-3\right)}{m-2}\)
Theo đề bài m cần thỏa mãn :\(\frac{-2\left(2m+3\right)}{m-2}=6\)
\(\Leftrightarrow\frac{-10m+6}{m-2}=0\left(m\ne2\right)\)
\(\Leftrightarrow-10m+6=0\)
\(\Leftrightarrow m=\frac{3}{5}\)(?)
Số học sinh giỏi 2 môn:
+Toán và lí: \(5-3=2\left(hs\right)\)
+Toán và sinh: \(5-3=2\left(hs\right)\)
+Sinh và lí: \(7-3=4\left(hs\right)\)
Số học sinh chỉ giỏi 1 môn:
+Toán:\(10-2-2-3=3\left(hs\right)\)
+Lý: \(9-4-2-3=0\left(hs\right)\)
+Sinh: \(13-4-2-3=4\left(hs\right)\)
Vậy tổng số học sinh giỏi ít nhất 1 môn là:
\(3+0+4+2+2+4+3=18\left(hs\right)\)
Vậy..............................
Lời giải:
\(y=mx^2-(m-2)x-2m+3\)
\(\Leftrightarrow m(x^2-x-2)+(2x+3-y)=0\)
Ta thấy điều trên luôn đúng với mọi $m$ khi và chỉ khi:
\(\left\{\begin{matrix} x^2-x-2=0\\ 2x+3-y=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x-2)(x+1)=0\\ y=2x+3\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} (x,y)=(2,7)\\ (x,y)=(-1,1)\end{matrix}\right.\)
Vậy parabol (P) luôn đi qua 2 điểm cố định là $(2,7)$ và $(-1,1)$
Ta có đpcm.
a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)
bài này nếu ai lanh sẽ thấy hệ số \(a\) và \(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .
b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .
áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)
vậy \(m=-\sqrt{3};m=\sqrt{3}\)
Đề thiếu. Bạn xem lại đề.