K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

Ta có : 

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\)\(2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\)\(\left(2a^2-a^2\right)+\left(2b^2-b^2\right)-2ab\ge0\)

\(\Leftrightarrow\)\(a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\) ( luôn đúng với mọi số thực a, b ) 

Vậy \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Chúc bạn học tốt ~ 

6 tháng 8 2020

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

6 tháng 8 2020

sửa đề thành \(a^2+b^2+c^2=3\) nhé

2 tháng 5 2022

-Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)

-Cộng các vế, ta được:

\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)

-Dấu "=" xảy ra khi \(a=b=c=d=0\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
4 tháng 4 2015

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

4 tháng 4 2015

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

28 tháng 12 2019

a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3

⇔ x ≤ 3/4

Vậy: x ≤ 3/4

b) a, b > 0

Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)

Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)

Cộng (1) và (2) vế theo vế, ta được:

2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2

31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Cauchy hoặc biến đổi tương đương đều được nhé.

ĐK: \(ab\ne0\)

\(a^2+\dfrac{1}{a^2}-2=\dfrac{a^4-2a^2+1}{a^2}=\dfrac{\left(a^2-1\right)^2}{a^2}\ge0\)

\(\Leftrightarrow a^2+\dfrac{1}{a^2}\ge2\) \(\forall a\in R,a\ne0\)

Tương tự và cộng theo vế có đpcm. Đẳng thức xảy ra khi \(a=b=1\)

 

30 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b

30 tháng 3 2021

úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé

2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab

= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )

Sử dụng kết quả ở bài trước ta có đpcm

Đẳng thức xảy ra <=> a=b=1/2