Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d là ƯCLN của a+1 và 3a+4
=>a+1 và 3a+4 chia hết cho d
=>(3a+4)-3(a+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(a+1,3a+4)=1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi UCLN (a+1;3a+4)=d
=>a+1:d; 3a+4:d=>(3a+4)-(a+1):d
=>(3a+4)-3(a+1):d=>3a+4-3a-3:d=>1:d=>d =1 hoặc d = -1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi ƯCLN(6n + 7 ; 8n + 9) = d
=> \(\hept{\begin{cases}6n+7⋮d\\8n+9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(6n+7\right)⋮d\\3\left(8n+9\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+28⋮d\\24n+27⋮d\end{cases}}\)
=> \(\left(24n+28\right)-\left(24n+27\right)⋮d\)
=> \(1⋮d\)
=> d = 1
=> 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau
A=13.15.19+21.27.23=13.3.5.19+3.7.27.23
= 3.(13.5.19+7.27.23) chia hết cho 3
=> A là hợp số
B=5.7.9.11-10.17.4=5.7.9.11-5.2.17.4
B=5.(7.9.11-2.17.4) chia hết cho 5
=>B là hợp số
Gọi WCLN(7n+10; 5n+7) là d. Ta có:
7n+10 chia hết cho d => 35n+50 chia hết co d
5n+7 chia hết cho d => 35n+49 chia hết cho d
=> 35n+50-(35n+49) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> WCLN(7n+10; 5n+7) = 1
=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)
Gọi d là ƯC ( n + 5 ; 2n + 9 ) nên ta có :
(n + 5) ⋮ d và (2n + 9) ⋮ d
=> 2(n + 5) và (2n + 9) ⋮ d
=> (2n + 10) ⋮ d và (2n + 9) ⋮ d
=> (2n + 10) - (2n + 9) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( n + 5; 2n + 9 ) = 1 => n + 5 và 2n + 9 là nguyên tố cùng nhau
=> đpcm
Gọi UCLN( n + 5 ; 2n +9 ) là d
Theo bài ra , ta có :
2n + 9 chia hết cho d
n + 5 chia hết cho d => 2n +10 chia hết cho d
mà ( 9 , 10 ) = 1 => ( 2n +10 ; 2n +9 ) = 1 => ( n + 5 ; 2n + 9 ) = 1
Vậy n +5 và 2n + 9 là 2 số nguyên tố cùng nhau
( đpcm )
Gọi d là ước của 2 số: 3a+7&4a+9
+)3a+7\(⋮\)d
=>4.(3a+7)\(⋮\)d
=>12a+28\(⋮\)d(1)
+)4a+9\(⋮\)d
=>3.(4a+9)\(⋮\)d
=>12a+27\(⋮\)d(2)
Từ (1) và(2) suy ra(12a+28)-(12a+27)\(⋮\)d
=>12a+28-12a-27\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì d=1 nên 3a+7&4a+9 là 2 số ntố cùng nhau
Chúc bn học tốt