
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào


câu 1:
2 + 2^2 + 2^3 + ... + 2^20 = 2( 1 + 2 + 2^2 +... + 2^19) chia hết cho 2
câu 2
2 + 2^2 + 2^3 + 2^4 +... + 2^19 + 2^20
= ( 2 + 2^2) + ( 2^3 + 2^4) + ....+ ( 2^19 + 2^20)
= 2( 1 + 2 ) + 2^3( 1+3) +...+ 2^19(1+2)
= 2. 3 + 2^3 . 3 +...+2^19.3
= 3.(2+2^3+2^5+....+2^19) chia hết cho 3
\(a.2+2^2+2^3+...+2^{19}\)\(+2^{20}\)
Ta có: \(2⋮2,2^2,2^3⋮2,..2^{19}⋮2,2^{20}⋮2\)
\(\Rightarrow2+2^2+2^3+...+2^{19}+2^{20}⋮2\)
b.Giống trên

Ta có:
B = \(\frac{5^2}{10^2}\) + \(\frac{5^2}{11^2}\)+ ... + \(\frac{5^2}{99^2}\)
B = 52. (\(\frac{1}{10^2}\) + \(\frac{1}{11^2}\)+ ... + \(\frac{1}{99^2}\))
⇒ B > 52. (\(\frac{1}{10.11}\) + \(\frac{1}{11.12}\)+ ... + \(\frac{1}{99.100}\))
= 52. (\(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\))
= 52. (\(\frac{1}{10}-\frac{1}{100}\))
= 25.\(\frac{9}{100}\)
= \(\frac{9}{4}\)
⇒ B > \(\frac{9}{4}\) (ĐPCM)
Ta có :
-20 = -20
16 - 36 = 25 - 45
(2 + 2)^2 - (2 + 2) 9 = 5^2 - (5 x 9)
(2 + 2)^2 - 2(2 + 2)9/2 = 5^2 - (2 x5 x 9/2) (nhân 2 và chia 2)
(2 + 2)^2 - 2(2 + 2)9/2 + (9/2)^2 = 5^2 - (2 x5 x 9/2) + (9/2)^2 (cộng thêm (9/2)^2 vào hai vế)
Hai vế của phương trình trên đều ở dạng (a^2 - 2ab + b^2)
(2 + 2 - 9/2)^2 = (5 - 9/2) ^2 (vì a^2 - 2ab + b^2 = (a - b)^2)
2 + 2 - 9/2 = 5 - 9/2
2 + 2 = 5 (điều cần chứng minh).
Nguồn : tiin
Bài toán này vô lí