K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

Ta có:

B = \(\frac{5^2}{10^2}\) + \(\frac{5^2}{11^2}\)+ ... + \(\frac{5^2}{99^2}\)

B = 52. (\(\frac{1}{10^2}\) + \(\frac{1}{11^2}\)+ ... + \(\frac{1}{99^2}\))

⇒ B > 52. (\(\frac{1}{10.11}\) + \(\frac{1}{11.12}\)+ ... + \(\frac{1}{99.100}\))

= 52. (\(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\))

= 52. (\(\frac{1}{10}-\frac{1}{100}\))

= 25.\(\frac{9}{100}\)

= \(\frac{9}{4}\)

⇒ B > \(\frac{9}{4}\) (ĐPCM)

7 tháng 10 2016

 Mình làm đc mỗi 1 câu, Thông cảm

7 tháng 10 2016

7^6+7^5+7^4 chia hết cho 11

= 7^4.2^2+7^4.7+7^4

= 7^4.(2^2+7+1)

= 7^4. 11

Vì tích này có số 11 nên => chia hết cho 7

9 tháng 8 2016

C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

  =\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\frac{99}{100}\)

  =\(\frac{-98}{100}=\frac{-49}{50}\)

10 tháng 8 2016

C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1 
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1) 
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A 
Dễ thấy 1/2.1 = 1/1 - 1/2 
1/3.2 = 1/2 - 1/3 
..................... 
1/99.98 = 1/98 - 1/99 
1/100.99 = 1/99 - 1/100 
=> cộng từng vế với vế ta

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự

31 tháng 10 2023

a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)