K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
JJ
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
NT
0
N
2 tháng 12 2018
đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+....+\frac{1}{\left(2n+1\right)^2}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right).\left(2n+1\right)}\)
\(A< \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)\)
vì n lớn hơn hoặc bằng 1 => 2n+1 lớn hơn hoặc bằng 3
\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)< \frac{1}{2}.\left(1-\frac{1}{3}\right)=\frac{1}{3}\)
=> \(A< \frac{1}{4}\)(đpcm)
ps:tuy nhiên ko thuyết phục lắm nhưng cái đề hơi sai đoạn n >= 1 ấy :((
nếu n=1 => 2n+1=3 => 1/3^2+...+1/3^2???