K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+....+\frac{1}{\left(2n+1\right)^2}\)

\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right).\left(2n+1\right)}\)

\(A< \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)\)

vì n lớn hơn hoặc bằng 1 => 2n+1 lớn hơn hoặc bằng 3

\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)< \frac{1}{2}.\left(1-\frac{1}{3}\right)=\frac{1}{3}\)

=> \(A< \frac{1}{4}\)(đpcm)

ps:tuy nhiên ko thuyết phục lắm nhưng cái đề hơi sai đoạn n >= 1 ấy :((

nếu n=1 => 2n+1=3 => 1/3^2+...+1/3^2???

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.

a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3

nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)

c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9

nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)

15 tháng 10 2016

3n+2 - 2n+2 + 3n - 2n

= 3n.(32+1) - 2n(22+1)

= 3n.10 - 2n.5

Có: 3n.10 có tận cùng là 0

Vì 2n chẵn

=> 2n.5 có tận cùng là 0

=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10

=>  3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)