K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NP
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
0
30 tháng 6 2021
a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3
nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)
c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9
nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)
DQ
0
NT
1
15 tháng 10 2016
3n+2 - 2n+2 + 3n - 2n
= 3n.(32+1) - 2n(22+1)
= 3n.10 - 2n.5
Có: 3n.10 có tận cùng là 0
Vì 2n chẵn
=> 2n.5 có tận cùng là 0
=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)
đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+....+\frac{1}{\left(2n+1\right)^2}\)
\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right).\left(2n+1\right)}\)
\(A< \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)\)
vì n lớn hơn hoặc bằng 1 => 2n+1 lớn hơn hoặc bằng 3
\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)< \frac{1}{2}.\left(1-\frac{1}{3}\right)=\frac{1}{3}\)
=> \(A< \frac{1}{4}\)(đpcm)
ps:tuy nhiên ko thuyết phục lắm nhưng cái đề hơi sai đoạn n >= 1 ấy :((
nếu n=1 => 2n+1=3 => 1/3^2+...+1/3^2???