K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

321>231

20 tháng 6 2017

321 > 231

NV
5 tháng 3 2021

\(A=2+2^3+...+2^{101}\)

\(4A=2^3+2^5+...+2^{101}+2^{103}\)

\(4A-A=2^{103}-2\)

\(3A=2^{103}-2\)

\(A=\dfrac{2^{103}-2}{3}\)

\(\Rightarrow1+2+2^3+...+2^{101}=A+1=\dfrac{2^{103}+1}{3}\)

Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)

=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(3S=2^{101}-2\)

=>\(S=\dfrac{2^{101}-2}{3}\)

22 tháng 1

Chịuuuuuuu

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

5 tháng 3 2021

Đặt :

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)

\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)

\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)

Vậy..

28 tháng 6 2017

10 tháng 1 2017

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:

$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên 

Do đó $A$ chẵn hay $A\vdots 2(*)$

Mặt khác:

$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên 

$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$

Và:

$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$

do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên 

$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$

Do đó: 

$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$

Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)

 
 

14 tháng 5 2022

\(A.x=x+x^2+x^3+...+x^{101}\)

\(A.x-A=x^{101}-1\Rightarrow A\left(x-1\right)=x^{101}-1\)

\(\Rightarrow A=\dfrac{x^{101}-1}{x-1}\)

 

10 tháng 7 2018

297 . 299

= 297 . ( 298 + 1 )

= 297 . 298 + 297

2982 = 298 . 298

        = ( 297 + 1 ) . 298

        = 297 . 298 + 298

Mà 297 . 298 + 297 < 297 . 298 + 298 nên 297 . 299 < 2982 ( đpcm )