K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

1) Xét:

\(\left(a-b\right)+\left(c-d\right)=a-b+c-d\)

\(\left(a+c\right)-\left(b+d\right)=a+c-b-d=a-b+c-d\) (giao hoán)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)

2) Xét:

\(-\left(-a+c-d\right)-\left(-c-a+d\right)=a-c+d+c+a-d\)

\(=\left(a-a\right)+\left(c-c\right)+\left(d-d\right)\)

\(=0\)

Vậy \(-\left(-a+c-d\right)-\left(-c-a+d\right)=0\)

3) Xét:

\(a\left(b-c-d\right)-a\left(b+c-d\right)\)

\(=ab-ac-ad-ab-ac+ad\)

\(=\left(ab-ab\right)+\left(ac-ac\right)+\left(-ad+ad\right)\)

\(=0\)

Vậy \(a\left(b-c-d\right)-a\left(b+c-d\right)=0\)

P/s: test lại đề phần 2) dấu của số trừ

18 tháng 5 2017

Nghỉ lâu, giờ vào bài :v

Ta có : a,b,c,d >0

\(\Rightarrow\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)

\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)

\(\dfrac{c}{c+d+a}>\dfrac{c}{c+d+a+b}\)

\(\dfrac{d}{d+a+b}>\dfrac{d}{d+a+b+c}\)

Cộng cả 4 vế , ta được :

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(1\right)\)

Ta lại có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)

\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)

\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)

\(\dfrac{d}{d+a+b}< \dfrac{d}{d+b}\)

Cộng 4 vế , ta được :

\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{d}{b+d}\right)=\left(\dfrac{a+c}{a+c}\right)+\left(\dfrac{b+d}{b+d}\right)=1+1=2\)

Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\left(2\right)\)

Từ (1) và (2)=> đpcm

2 tháng 12 2016

Bạn ơi đây là Tiếng Anh mà chứ đâu phải Toán

3 tháng 12 2016

Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d

A > a+b+c+d/a+b+c+d = 1 (1)

Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:

A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2

Từ (1) và (2) => đpcm

20 tháng 8 2015

mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn

Cho a/b=c/d suy ra ad=bc

ta có ad+ac=bc+ac

suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé

=>đpcm