Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 cạnh của tam giác có độ dài là x, y, z
⇒⇒ x+y+z=60x+y+z=60
Như ta đã học, diện tích tam giác =12.h.a=12.h.a
Trong đó a là một cạnh của tam giác; h là chiều cao hạ từ một đỉnh lên cạnh a
Áp dụng vào bài này ta có: 12.12.x=12.15.y=12.20.z12.12.x=12.15.y=12.20.z
Vì bài này 3 cạnh có thể coi như nhau, nên có thể hoán đổi vị trí của chúng
Rút ra thay vào, ta được tam giác thỏa mãn yêu cầu bài toán có 3 cạnh là 36cm;2,4cm;21,6cm
gọi độ dài các cạnh của của tam giác là x,y,z. Độ dài các cạnh tỉ lệ nghịch với độ dài các đường cao t/ư nên x:y:z \(\frac{1}{12}:\frac{1}{15}:\frac{1}{20}\)= 5:4:3 \(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)=\(\frac{x+y+z}{5+4+3}\)Ta được x = 25 ; y =20; z = 15
Gọi độ dài các cạnh hình tam giác là x; y; z.Độ dài các cạnh có tỉ lệ nghịch với đường cao t/ư nên:
x : y : z = \(\frac{1}{12}\): \(\frac{1}{15}\): \(\frac{1}{20}\)= 5 : 4 : 3 => \(\frac{x}{5}\)= \(\frac{y}{4}\)= \(\frac{z}{3}\)= \(\frac{x+y+z}{3+4+5}\)
Ta được: x = 25; y = 20; z = 15.
Học tốt
Gọi độ dài 3 cạnh của tam giác là a, b, c.
Ta có:
\(a+b+c=60\)
\(\Rightarrow12a=15b=20c\)
\(\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{60}{12}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.5=25\\b=5.4=20\\c=5.3=15\end{cases}}\)
Vậy độ dài 3 cạnh của tam giác là 25cm, 20cm và 15 cm.
Gọi độ dài 3 cạnh lần lượt là a,b,c
Theo đề, ta có: 5a=7b và 7b=8c
=>a/7=b/5 và b/8=c/7
=>a/56=b/40=c/35
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{56}=\dfrac{b}{40}=\dfrac{c}{35}=\dfrac{a+b+c}{56+45+35}=\dfrac{31}{136}\)
=>a=217/17cm; b=155/17cm; c=1085/136cm
Gọi 3 cạnh của tam giác lần lượt là \(a, b, c ( cm) (a,b,c > 0)\)
Theo đề bài 3 cạnh của tam giác tỉ lệ với 3, 4, 5 nên ta có tỉ số \(a : b : c = 3 : 4 : 5.\)
Và chu vi tam giác là 60cm nên ta có:\( a + b + c = 60.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{12}} = \dfrac{{60}}{{12}} = 5\)
\( \Rightarrow a = 3.5=15 ; b = 4.5=20 ; c = 5.5=25.\)
Vậy 3 cạnh của tam giác có độ dài là \(15cm, 20cm, 25cm.\)
gọi a,b,c lần lược là các cạnh của tam giác
ta có 12.a=15.b=20.c\(\Rightarrow\)\(\frac{a}{10}=\frac{b}{8}=\frac{c}{6}=\frac{a+b+c}{24}=\frac{60}{24}\)ttu đây tim a,b,c
5cm,20,40