Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(xyz\ne0\) ta có:
\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)
Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)
Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)
\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))
\(\Rightarrow x+y+z\ge3\)
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
//Hoặc cách khác sử dụng AM-GM:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);
\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)
Cộng vế với vế của 4 BĐT trên ta có:
\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Ta có : \(xy+yz+xz=0\)
\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
C/m 1 bài toán phụ
Cho \(a+b+c=0\) . CM : \(a^3+b^3+c^3=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)
Lại có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)
Từ bài toán phụ trên mà ta lại có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
Ta lại có : \(M=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz.\dfrac{3}{xyz}=3\)
Vậy \(M=3\)
Học tốt nhé bạn
\(\text{Sử dụng AM-GM, ta có}\)
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+xz\le x^2+y^2+z^2\)
\(\text{Cộng theo vế, ta được}\)
\(6=x+y+z+xy+yz+xz\le\sqrt{3\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
Suy ra\(x^2+y^2+z^2\ge3\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\Rightarrow\frac{x^2+y^2+z^2}{2}+\frac{3}{2}\ge x+y+z\)
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;z^2+x^2\ge2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Khi đó:\(\frac{3}{2}\left(x^2+y^2+z^2\right)+\frac{3}{2}\ge x+y+z+xy+yz+zx=6\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\Rightarrow x^2+y^2+z^2\ge3\)
Các thánh giúp e nha Ace Legona Nguyễn Huy Tú Toshiro Kiyoshi Phương An Akai Haruma @Nguyễn Vũ Phượng Thảo
x2 + y2 + z2 = xy + yz + xz
2x2 + 2y2 + 2z2 = 2xy + 2yz + 2xz
2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
x2 - 2xy + y2 + x2 - 2xz + z2 + y2 - 2yz + z2 = 0
(x - y)2 + (x - z)2 + (y - z)2 = 0 mà (x - y)2 ; (x - z)2 ; (y - z)2 đều ko âm
=> (x - y)2 = (x - z)2 = (y - z)2 = 0 => x - y = x - z = y - z = 0 => x = y = z
Chúc bạn học tốt