Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)
\(x^2+y^2\ge2xy\) \(y^2+z^2\ge2yz\) \(z^2+x^2\ge2zx\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
Dấu bằng xảy ra khi x=y=z=1
làm hơi tắt thông cảm
Cho các số x, y, z thỏa mãn: x + y + z + xy + xz + yz = 3033
Chứng minh rằng x2 + y2 + z2 >2021
Hép mi
Ta có :
( x - 1 )2\(\ge\)0 => x2 - 2x + 1 \(\ge\)0 => x2 + 1 \(\ge\)2x
Tương tự ta có : y2 + 1 \(\ge\)2y ; z2 + 1 \(\ge\)2z
=> x2 + y2 + z2 + 3 \(\ge\)2 ( x + y + z ) (1)
Lại có : ( x + y + z )2 \(\ge\)0 => x2 + y2 + z2 \(\ge\)2 ( xy + yz + zx ) (2)
Lấy (1) + (2) => 2 ( x2 + y2 + z2 ) + 3 \(\ge\)2 ( x + y + z + xy + yz + zx )
<=> 2 ( x2 + y2 + z2 ) \(\ge\)2.3033 - 3 = 6063
<=> x2 + y2 + z2 \(\ge\)3031,5 > 2021 ( đpcm )
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)
\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))
\(\Rightarrow x+y+z\ge3\)
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
//Hoặc cách khác sử dụng AM-GM:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);
\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)
Cộng vế với vế của 4 BĐT trên ta có:
\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)