Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔACB vuông tại A có AH vuông góc BC
nên AC^2=CH*CB
c: \(BC=4+9=13\left(cm\right)\)
=>\(\dfrac{S_{ABH}}{S_{CBA}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{HB}{HC}=\dfrac{4}{9}\)
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) là góc chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao
AB^2 + AC^2 = BC^2
=> BC^2 = 36 + 64 = 100 => BC = 10 cm
Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
mà DC = BC - BD = 10 - BD
hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm
=> DC = 10 - BD = 10 - 30/7 = 40/7 cm
b, Xét tam giác ABC và tam giác AHB ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác AHB ( g.g )
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
a: Xét ΔAHB có
E là trung điểm của AB
EK//AH
Do đó: K là trung điểm của BH
hay BK=HK
b: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC
Suy ra: FE//BC và \(EF=\dfrac{BC}{2}\)
hay BC=2EF và EFCB là hình thang
a: Xét tứ gíc AMDN có \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
=>AD=MN
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HCA}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HA^2=HB\cdot HC\)
c: \(HA^2=HB\cdot HC\)
=>\(HA^2=2\cdot8=16=4^2\)
=>HA=4(cm)
ΔHAB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)
ΔHAC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)