Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
tại x= 1 thì ta có tọa độ giao điểm A(1;2)
tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))
còn câu b) để từ từ mình suy nghĩ rồi giải sau
mình làm ra được câu b rồi
ta có pt hđgđ
\(2x^2=2mx-m-2x+2\)
\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)
\(\Delta=m^2-4m+5>0\)
\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)
\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)
Bài 2:
Gọi (d): y=ax+b là phương trình đường thẳng cần tìm
Vì (d)//y=-x+2 nên a=-1
Vậy: y=-x+b
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Thay x=1 và y=1 vào y=-x+b, ta được:
b-1=1
hay b=2
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)
\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)
\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)
\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)
c: Vì (d1): y=ax+b tiếp xúc với (P) nên ta có:
\(-x^2-ax-b=0\)
\(\Leftrightarrow x^2+ax+b=0\)
\(\text{Δ}=a^2-4b=0\)
Thay x=2 và y=-4 vào (d1), ta được:
2a+b=-4
=>b=-4-2a
\(a^2-4b=0\)
\(\Leftrightarrow a^2-4\left(-2a-4\right)=0\)
\(\Leftrightarrow a^2+8a+16=0\)
=>a=-4
=>b=-4-2a=-4+8=4
Vậy (d1): y=-4x+4
a: Phương trình hoành độ giao điểm là:
\(-x^2-\left(3-m\right)x-2+2m=0\)
\(\Leftrightarrow x^2+\left(3-m\right)x-2m+2=0\)
\(\text{Δ}=\left(3-m\right)^2-4\left(-2m+2\right)\)
\(=m^2-6m+9+8m-8=m^2+2m+1\)
Để (d) và (P) cắt nhau tại hai điểm phân biệt thì m+1<>0
hay m<>-1