Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Vì (d1): y=ax+b tiếp xúc với (P) nên ta có:
\(-x^2-ax-b=0\)
\(\Leftrightarrow x^2+ax+b=0\)
\(\text{Δ}=a^2-4b=0\)
Thay x=2 và y=-4 vào (d1), ta được:
2a+b=-4
=>b=-4-2a
\(a^2-4b=0\)
\(\Leftrightarrow a^2-4\left(-2a-4\right)=0\)
\(\Leftrightarrow a^2+8a+16=0\)
=>a=-4
=>b=-4-2a=-4+8=4
Vậy (d1): y=-4x+4
a: Phương trình hoành độ giao điểm là:
\(-x^2-\left(3-m\right)x-2+2m=0\)
\(\Leftrightarrow x^2+\left(3-m\right)x-2m+2=0\)
\(\text{Δ}=\left(3-m\right)^2-4\left(-2m+2\right)\)
\(=m^2-6m+9+8m-8=m^2+2m+1\)
Để (d) và (P) cắt nhau tại hai điểm phân biệt thì m+1<>0
hay m<>-1
a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
tại x= 1 thì ta có tọa độ giao điểm A(1;2)
tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))
còn câu b) để từ từ mình suy nghĩ rồi giải sau
mình làm ra được câu b rồi
ta có pt hđgđ
\(2x^2=2mx-m-2x+2\)
\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)
\(\Delta=m^2-4m+5>0\)
\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)
\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)
Bài 2:
Gọi (d): y=ax+b là phương trình đường thẳng cần tìm
Vì (d)//y=-x+2 nên a=-1
Vậy: y=-x+b
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Thay x=1 và y=1 vào y=-x+b, ta được:
b-1=1
hay b=2
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(a=1;b=-3;c=-m^2+1\)
\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9+4m^2-4=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt