Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2-n+2=k^2\left(k\in Z\right)\)
\(\Rightarrow4n^2-4n+8=4k^2\)
\(\Rightarrow\left(4n^2-4n+1\right)+7=4k^2\)
\(\Rightarrow\left(2n-1\right)^2-4k^2=-7\Rightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-7\)
\(\Rightarrow2n-2k-1\in\left\{-7;-1;1;7\right\}\)
Ta có bảng:
2n - 2k - 1 | -7 | -1 | 1 | 7 |
2n + 2k - 1 | 1 | 7 | -7 | -1 |
n - k | -3 | 0 | 1 | 4 |
n + k | 1 | 4 | -3 | 0 |
n | -1 | 2 | -1 | 2 |
Vậy \(n\in\left\{-1;2\right\}\)
Lời giải:
Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn
$\Rightarrow n^2-3n+1$ lẻ. Do đó:
$25\equiv -1\pmod{13}$
$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$
$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$
Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương
Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$
$\Leftrightarrow n^2-3n+1=1$
$\Leftrightarrow n(n-3)=0$
$\Leftrightarrow n=3$ (do $n$ nguyên dương)
\(\frac{n^2+3n+1}{n+2}\inℤ\)
\(\Rightarrow n^2+3n+1⋮n+2\)
\(\Rightarrow n^2+4n+4-n-3⋮n+2\)
\(\Rightarrow\left(n+2\right)^2-\left(n+3\right)⋮n+2\)
\(\Rightarrow n+3⋮n+2\)
\(\Rightarrow n+2+1⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ\left(1\right)\)
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\) mà n thuộc N
\(\Rightarrow n\in\varnothing\)
để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)
nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)
nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)
vậy \(x\in\left\{-2,0,1,3\right\}\)
Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét từng trường hợp :
TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)
\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )
TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn
tương tự 2 trường hợp còn lại
đặt x2 - x + 13 = a2
4x2 - 4x + 52 = 4a2
( 4x2 - 4x + 1 ) - 4a2 = -51
( 2x - 1 )2 - ( 2a )2 = -51
( 2x - 1 - 2a ) ( 2x - 1 + 2a ) = -51
từ đó lập bảng => ...