Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
a. Vì AB,AC là 2 tiếp tuyến của đt (O) (gt) => AO là phân giác của \(\widehat{BOC}\)(Định lý 2 tiếp tuyến cắt nhau tại 1 điểm)
Mà \(\Delta BOC\)cân tại O (Do OB = OC = R) => AO là đường cao của \(\Delta\)BOC (T/c \(\Delta\)cân) => \(AO\perp BC\)tại H (Đpcm)
b. Ta có: \(\widehat{CMD}=90^o\)(Góc nội tiếp chắn nửa đt) => \(CM\perp AM\Rightarrow\widehat{AMC}=90^o\)
\(Do\)\(AO\perp BC\)tại H (cmt) => \(\widehat{AHC}=90^o\)
Xét tứ giác AMHC có: \(\widehat{AMC}=\widehat{AHC}\left(=90^o\right)\)=> Tứ giác AMHC là tứ giác nội tiếp (Dhnb) => Đpcm
c.
Xét đt (O) có: \(\widehat{MBC}=\frac{1}{2}sđ\widebat{MC}=\widehat{NBH}\)(T/c góc nội tiếp)
\(\widehat{ACM}=\frac{1}{2}sđ\widebat{MC}\)(T/c góc tạo bởi tiếp tuyến và dây cung) => \(\widehat{ACM}=\widehat{NBH}\)(1)
Vì AMHC là tứ giác nội tiếp (cmt) => \(\widehat{ACM}=\widehat{AHM}=\widehat{NHM}\)(2 góc nội tiếp cùng chắn \(\widebat{AM}\)) (2)
Từ (1) và (2) => \(\widehat{NBH}=\widehat{NHM}\)
Xét \(\Delta NBH\)và \(\Delta NHM\)có:
+ \(\widehat{NBH}=\widehat{NHM}\left(cmt\right)\)
+ \(\widehat{N}\)chung
=> \(\Delta NBH~\Delta NHM\left(g.g\right)\) => \(\frac{NB}{NH}=\frac{NH}{NM}\Rightarrow NH^2=NM.NB\)(Đpcm) (3)
Vì tứ giác AMHC nội tiếp (Cmt) => \(\widehat{HAM}=\widehat{NAM}=\widehat{HCM}=\widehat{BCM}=\frac{1}{2}sđ\widebat{MB}\)(2 góc nội tiếp cùng chắn \(\widebat{HM}\))
Lại có: \(\widehat{NBA}=\widehat{MBA}=\frac{1}{2}sđ\widebat{MB}\)(T/c góc tạo bởi tiếp tuyến và dây cung) => \(\widehat{NAM}=\widehat{NBA}\)
Xét \(\Delta NAM\)và \(\Delta NBA\)có:
+ \(\widehat{NAM}=\widehat{NBA}\left(Cmt\right)\)
+ \(\widehat{N}\)chung
=> \(\Delta NAM~\Delta NBA\left(g.g\right)\Rightarrow\frac{NA}{NB}=\frac{NM}{NA}\Rightarrow NA^2=NM.NB\)(4)
Từ (3) và (4) => \(NH^2=NA^2\Rightarrow NH=NA\left(Đpcm\right)\)
d.
Áp dụng hệ thức lượng trong \(\Delta ABO\)vuông tại B với đường cao BH ta được:
\(AB^2=AH.AO=AH.\frac{\left(OA+OA\right)}{2}=AH.\frac{\left(AK-OK+AI+OI\right)}{2}\)= \(AH.\frac{\left(AK+AI\right)}{2}\)(Do OK = OI = R)
= \(2AN.\frac{\left(AK+AI\right)}{2}=AN.\left(AK+AI\right)\)(Do NA =NH (cmt) => AH = 2AN) (5)
Xét \(\Delta ABI\)và \(\Delta AKB\)Có:
+ \(\widehat{A}\)chung
+ \(\widehat{ABI}=\widehat{AKB}=\frac{1}{2}sđ\widebat{BI}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
=> \(\Delta ABI~\Delta AKB\left(g.g\right)\Rightarrow\frac{AB}{AK}=\frac{AI}{AB}\Rightarrow AB^2=AI.AK\)(6)
Từ (5) và (6) => \(AI.AK=AN.\left(AI+AK\right)\Rightarrow\frac{1}{AN}=\frac{AI+AK}{AI.AK}=\frac{1}{AI}+\frac{1}{AK}\)(Đpcm)
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
a: Xét ΔAMB vuông tại M và ΔAKS vuông tại K có
góc MAB chung
=>ΔAMB đồng dạng với ΔAKS
=>AM*AS=AK*AB
Xét ΔBNA vuông tại N và ΔBKS vuông tại K có
góc NBA chung
=>ΔBNA đồng dạng với ΔBKS
=>BN*BS=BK*BA
=>AM*AS+BN*BS=4*R^2
b: \(S_{q\left(MN\right)}=pi\cdot R^2\cdot\dfrac{60}{360}=\dfrac{1}{6}\cdot pi\cdot R^2\)
\(S_{OMN}=R^2\cdot\dfrac{\sqrt{3}}{2}\)
=>\(S_{vp\left(MN\right)}=R^2\left(\dfrac{1}{6}pi-\dfrac{\sqrt{3}}{2}\right)\)
Xét ΔSAB có MN//AB
nên SM/SA=SN/SB=MN/AB=1/2
=>SM=1/2SA; SN=1/2SB
=>M là trung điểm của SA, N là trung điểm của SB
=>ΔSAB đều
=>\(S_{SAB}=\left(2R\right)^2\cdot\dfrac{\sqrt{3}}{4}=R^2\sqrt{3}\)
SM=SN=MN=R
=>ΔSMN đều
=>\(S_{SMN}=\dfrac{R^2\sqrt{3}}{4}\)
=>\(S_{CMNB}=\dfrac{3R^2\sqrt{3}}{4}\)
DIện tích tam giác SAB phần nằm ngoài (O) là:
\(R^2\sqrt{3}-R^2\left(\dfrac{1}{6}pi-\dfrac{\sqrt{3}}{2}\right)-R^2\cdot\dfrac{3\sqrt{3}}{4}\)