Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. M tiếp tục bị hút dính vào Q.
B. M rời Q và vẫn bị hút lệch về phía Q.
C. M rời Q về vị trí thẳng đứng.
D. M bị đẩy lệch về phía bên kia.
Giải thích: Thoạt đầu M bị hút dính vào Q do hiện tượng nhiễm điện hưởng ứng. Khi dính vào Q nó lại bị nhiễm điện tiếp xúc với Q nên cùng dấu với Q và bị đẩy ra xa.
Sau khi cho hai quả cầu tiếp xúc với nhau thì mỗi quả cầu sẽ mang điện tích:
\(q'=\dfrac{q+0}{2}=\dfrac{q}{2}\)
Lực tương tác giữa hai quả cầu là lực điện: \(F=k.\dfrac{\left|q'\right|.\left|q'\right|}{r^2}=k.\dfrac{\left(\dfrac{q}{2}\right)^2}{2.sin\alpha.l}=k.\dfrac{\left(\dfrac{q}{2}\right)^2}{2.sin30^0}=k\left(\dfrac{q}{2}\right)^2\)
Xét một trong hai quả cầu (giả sử quả cầu nằm bên trái), ta có:
\(tan\alpha=\dfrac{F}{P}=\dfrac{k\left(\dfrac{q}{2}\right)^2}{mg}\)
\(\Rightarrow\left|q\right|=2\sqrt{\dfrac{tan\alpha.mg}{k}}=2\sqrt{\dfrac{tan30^0.5.10^{-3}.10}{9.10^9}}=3,58.10^{-6}C\)
Gọi q1,q2 là điện tích của quả cầu 1 và quả cầu 2 trước khi chúng tiếp xúc với nhau.Độ lớn của lực tương tác giữa chúng được xác định theo định luật Culông :
\(F_1=k\frac{\left|q_1q_2\right|}{r^2}\) từ đó \(q_1q_2=-\frac{F_1r^2}{k}\) (có dấu \(\text{"−"}\) vì hai điên tích \(q_1,q_2\) trái dấu)
Thay số ta được : \(q_1q_2=-\frac{6,4}{9}.10^{-13}\left(1\right)\)
Sau khi tiếp xúc với nhau, điện tích của hai quả cầu trở nên bằng nhau và có độ lớn bằng \(\frac{\left|q_1+q_2\right|}{2}\) do đó lực đẩy giữa chúng là: \(F_2=\frac{k\left(\frac{q_1+q_2}{2}\right)^2}{r^2}\)
Suy ra \(\left(q_1+q_2\right)^2=\frac{4F_2r^2}{k}\) Thay số vào ta được \(\left(q_1+q_2\right)^2=16.10^{-14}\)
hay : \(q_1+q_2=\pm4.10^{-7}\left(2\right)\)
Giải hệ phương trình (1),(2) ta được :
\(q_1=-\frac{4}{3}.10^{-7}\approx-1,33.10^{-7}C\)
\(q_2=\frac{16}{3}.10^{-7}\approx5,33.10^{-7}C\)
hoặc \(q_1=\frac{4}{3}.10^{-7}\approx1,33.10^{-7}C\)
\(q_2=-\frac{16}{3}.10^{-7}\approx-5,33.10^{-7}C\)
Góc lệch \(\alpha\) của dây treo được xác định bằng hệ thức (suy từ điều kiện cân bằng của hai quả cầu :)
\(\tan\alpha=\frac{F_đ}{P}\)
Với \(F_đ=k\frac{q^2}{a^2}\) Như vậy \(\tan\alpha=\frac{kq^2}{mga^2}\)
Thay số ta được : \(\tan\alpha=1\) suy ra \(\alpha=45^o\)
mình chưa hiểu đoạn tan a = F/P lắm bạn giải thích lại hộ mình đc ko
a) Chiều lên phương của sợi dây:
\(T\cos a=P=mg\)
\(T\sin a=F\left(F=kq_1.\frac{q_2}{r^2}\right)\)
Mà hai quả nhiểm điên như nhau.
\(\Rightarrow q_1=q_2=q\Rightarrow F=mg.\tan a\)
a là góc lệch sợi dây phương ngang.
Có: \(\sin a=\frac{r}{\left(2l\right)}\)
Vì a rất nhỏ \(\Rightarrow\sin a=\tan a=\frac{3}{50}\)
Thay vào ra \(F=3,6.10^{-4}\Rightarrow q=1,2.10^{-8}C\)
b) Lúc này: \(F=\frac{k.q^2}{e.r^2}\)
Với e là hằng số điện mới.
\(\Rightarrow F=\frac{mg.q^2}{er^2}=mg.\tan a=mg.\sin a=\frac{mg.r'}{2l'}\)
Thay vào tính được r' = 20 cm
Đầu tiên M bị hút dính vào Q do hiện tượng nhiễm điện hưởng ứng. Khi dính vào Q nó lại bị nhiễm điện tiếp xúc với Q nên M và Q bị nhiễm điện giống nhau và bị đẩy ra xa.
Đáp án : D