K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2023

Xét `\triangle MNP` vuông tại `M` có:

 `@cos \hat{N}=[MN]/[NP]=3/5`

     `=>\hat{N}~~53^o`

`@\hat{P}=90^o -\hat{N}=37^o`

`@MP=\sqrt{NP^2 -MN^2}=16`.

28 tháng 9 2023

Ta có:

cos N = MN/NP = 3/5

⇒ ∠N ≈ 53⁰

⇒ ∠P ≈ 90⁰ - 53⁰ = 37⁰

∆MNP vuông tại M

⇒ NP² = MN² + MP² (Pytago)

⇒ MP² = NP² - MN²

= 20² - 12²

= 256

⇒ MP = 16

27 tháng 11 2023

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\)

=>\(NH\cdot3NH=6^2=36\)

=>\(NH^2=12\)

=>\(NH=2\sqrt{3}\left(cm\right)\)

=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)

=>\(MP^2=108-36=72\)

=>\(MP=6\sqrt{2}\left(cm\right)\)

mik ko bít

I don't now

................................

.............

29 tháng 10 2021

a: NP=10(cm)

\(\widehat{P}=37^0\)

\(\widehat{N}=53^0\)

29 tháng 10 2021

a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)

b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)

\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)

5 tháng 11 2021

a: Xét ΔMNP vuông tại M có 

sinˆN=MPPN=45

cosˆN=MNMP=35

tanˆN=MPMN=43

cotˆN=MNMP=34

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

{MH⋅NP=MN⋅MPMN2=HN⋅NP⇔{MH=2.4cmNH=1.8cm