Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\)
=>\(NH\cdot3NH=6^2=36\)
=>\(NH^2=12\)
=>\(NH=2\sqrt{3}\left(cm\right)\)
=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)
=>\(MP^2=108-36=72\)
=>\(MP=6\sqrt{2}\left(cm\right)\)
a: ΔPIM vuông tại I
=>IP^2+IM^2=MP^2
=>IM^2=10^2-6^2=64
=>IM=8(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên PI*PN=PM^2
=>PN=10^2/6=50/3(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên MI^2=IN*IP
=>IN=8^2/6=32/3(cm)
Xét ΔMNP vuông tại M có sin MNP=MP/PN
=10:50/3=3/5
=>góc MNP=37 độ
b: C=MN+NP+MP
=10+40/3+50/3
=10+90/3
=10+30
=40(cm)
c: Xét ΔIMP vuông tại I có IK là đường cao
nên IK*PM=IP*IM
=>IK*10=6*8=48
=>IK=4,8(cm)
1) Ta có MP ^ 2 = 15^2 = 225 cm
Mà MN^2 + NP ^2 = 12^ 2 + 9^2 = 144 + 81 = 225
=> MP^2 = MN^2 + NP^2
=> Tam giác MNP cân tại N
a: NP=NI+IP
=5+7=12(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)
b: trung tâm là cái gì vậy bạn?
c: Nếu kẻ như thế thì H trùng với I rồi bạn
Xét `\triangle MNP` vuông tại `M` có:
`@cos \hat{N}=[MN]/[NP]=3/5`
`=>\hat{N}~~53^o`
`@\hat{P}=90^o -\hat{N}=37^o`
`@MP=\sqrt{NP^2 -MN^2}=16`.
Ta có:
cos N = MN/NP = 3/5
⇒ ∠N ≈ 53⁰
⇒ ∠P ≈ 90⁰ - 53⁰ = 37⁰
∆MNP vuông tại M
⇒ NP² = MN² + MP² (Pytago)
⇒ MP² = NP² - MN²
= 20² - 12²
= 256
⇒ MP = 16
a, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{6\times8}{10}=4,8\left(cm\right)\)
b, Áp dụng định lý Pytago vào tam giác MNP
\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{9^2+16^2}=\sqrt{337}\left(cm\right)\)
Ta cs
\(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{9\times16}{\sqrt{337}}\approx7,8\left(cm\right)\)
c, \(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2}=\sqrt{5}\left(cm\right)\)
Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{\sqrt{2}\times\sqrt{3}}{\sqrt{5}}=\dfrac{\sqrt{30}}{5}\left(cm\right)\)
Xét ΔMNP vuông tại M có
\(MN=NP\cdot\dfrac{1}{2}=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)
\(\Leftrightarrow MP=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)