K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023


 A  áp dụng hệ thức lượng trong tam giác....
+  MI=NI*IP
  MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+   MN=NP*NI
MN=  12*5=60
 

27 tháng 11 2023

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\)

=>\(NH\cdot3NH=6^2=36\)

=>\(NH^2=12\)

=>\(NH=2\sqrt{3}\left(cm\right)\)

=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)

=>\(MP^2=108-36=72\)

=>\(MP=6\sqrt{2}\left(cm\right)\)

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

1) Ta có MP ^ 2 = 15^2 = 225 cm

Mà MN^2 + NP ^2 = 12^ 2 + 9^2 = 144 + 81 = 225

=> MP^2 = MN^2 + NP^2

=> Tam giác MNP cân tại N

26 tháng 10 2023

a: NP=NI+IP

=5+7=12(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)

b: trung tâm là cái gì vậy bạn?

c: Nếu kẻ như thế thì H trùng với I rồi bạn

26 tháng 10 2023

sửa lại chỗ câu b ghi lộn MP Chứ k phải NP

 

28 tháng 9 2023

Xét `\triangle MNP` vuông tại `M` có:

 `@cos \hat{N}=[MN]/[NP]=3/5`

     `=>\hat{N}~~53^o`

`@\hat{P}=90^o -\hat{N}=37^o`

`@MP=\sqrt{NP^2 -MN^2}=16`.

28 tháng 9 2023

Ta có:

cos N = MN/NP = 3/5

⇒ ∠N ≈ 53⁰

⇒ ∠P ≈ 90⁰ - 53⁰ = 37⁰

∆MNP vuông tại M

⇒ NP² = MN² + MP² (Pytago)

⇒ MP² = NP² - MN²

= 20² - 12²

= 256

⇒ MP = 16

10 tháng 9 2023

M N I P

a, Áp dụng định lý Pytago vào tam giác MNP

\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{6\times8}{10}=4,8\left(cm\right)\)

b, Áp dụng định lý Pytago vào tam giác MNP

\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{9^2+16^2}=\sqrt{337}\left(cm\right)\)

Ta cs

\(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{9\times16}{\sqrt{337}}\approx7,8\left(cm\right)\)

c, \(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2}=\sqrt{5}\left(cm\right)\)

Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{\sqrt{2}\times\sqrt{3}}{\sqrt{5}}=\dfrac{\sqrt{30}}{5}\left(cm\right)\)

10 tháng 10 2021

Xét ΔMNP vuông tại M có

\(MN=NP\cdot\dfrac{1}{2}=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)

\(\Leftrightarrow MP=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)