Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) TH1: Nếu x + y + t + z ≠ 0
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13
=> 3x = y + z + t => 4x = x + y + z + t (1)
3y = x + z + t 4y = x + y + z + t (2)
3z = x + y + t 4z = x + y + z + t (3)
3t = x + y + z 4t = x + y + z + t (4)
Từ (1)(2)(3)(4) => x = y = z = t
⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4
+) TH2: Nếu x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(x + t)
t + z = -(x + y)
t + x = -(y + z)
⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1
⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4
Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!
TA CỘNG 1 VÀO ĐẲNG THỨC TRÊN
\(\Rightarrow\)X=Y=Z=T
VẬY A=4 ;-1
\(6,8-\left(4,9-x\right)=2x-\frac{3}{4}\)
\(6,8-4,9+x=2x-\frac{3}{4}\)
\(1,9+x=2x-\frac{3}{4}\)
\(x-2x=-\frac{3}{4}-1,9\)
\(-x=-\frac{53}{20}\)
\(x=\frac{53}{20}\)
=.= hok tốt!!
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}.\)
Nếu x+y+z=0 ta có \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
khi đó \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(-z\right)\left(-x\right)\left(-y\right)}{xyz}=-1.\)
nếu \(x+y+z\ne0\)=>\(\hept{\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}}\)
ta có \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}.\)
suy ra \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}=\)
\(\frac{\left(2x\right)\left(2y\right)\left(2z\right)}{xyz}=8\)
vậy M=8 hoặc M=-1
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)\)
Xét 2 TH
+> Nếu \(x+y+z=0\)
=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
=> \(A=\left(-\frac{z}{y}\right)\left(-\frac{x}{z}\right)\left(-\frac{y}{x}\right)=-1\)
+> Nếu \(x+y+z\ne0\)
\(\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013y}{y}\)
=> \(\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{z+x}{y}+2013\)
=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}\)\(=\frac{x+y+y+z+z+x}{x+y+z}=2\)
=> \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
=> A = 2.2.2=8
Ta có :
\(A=\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013}{y}\)
\(\Leftrightarrow A=\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{x+z}{y}+2013=2015\)( Chỗ này áp dụng Tc của dãy tỉ số bằng nhau là ra )
\(\Leftrightarrow\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=2\)
\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\x+z=2y\end{cases}}\)
Thay vào ta có :
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)\)
\(=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)
Vậy ...........
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\) = \(\frac{x+y+z}{x+y+z}=1\)
=> \(x=y=z\)
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{x}\right)=\left(1+\frac{y}{y}\right)=\left(1+\frac{z}{z}\right)\)\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
áp dụng t/c dãy ti số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\frac{x}{y}=1\Rightarrow x=y,\frac{y}{z}=1\Rightarrow y=z,\frac{z}{x}=1\Rightarrow z=x\left(1\right)\)
từ (1) => x=y=z
\(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)
Theo tính chất dãy tỉ số bằng nhau: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)
Thay y và z bởi x (do x = y = z),ta được: \(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)