\(\frac{x+y+2013z}{z}\)=\(\frac{y+z+2013x}{x}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)\)

Xét 2 TH

+> Nếu \(x+y+z=0\)

=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

=> \(A=\left(-\frac{z}{y}\right)\left(-\frac{x}{z}\right)\left(-\frac{y}{x}\right)=-1\)


+> Nếu \(x+y+z\ne0\)

\(\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013y}{y}\)

=> \(\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{z+x}{y}+2013\)

=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}\)\(=\frac{x+y+y+z+z+x}{x+y+z}=2\)

=> \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

=> A = 2.2.2=8

8 tháng 11 2019

Ta có :

\(A=\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013}{y}\)

\(\Leftrightarrow A=\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{x+z}{y}+2013=2015\)( Chỗ này áp dụng Tc của dãy tỉ số bằng nhau là ra )

\(\Leftrightarrow\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=2\)

\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\x+z=2y\end{cases}}\)

Thay vào ta có :

\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)\)

\(=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)

Vậy ...........

24 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Ta có: \(A=\frac{2013x^2+y^2+z^2}{x^2+2013y^2+z^2}=\frac{2013x^2+x^2+x^2}{x^2+2013x^2+x^2}=\frac{2015x^2}{2015x^2}=1\)

25 tháng 10 2019

Hình như

25 tháng 10 2019

Ap dụng tính chất tỉ lệ thức ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Nên ta có

\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)

\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)

\(1+\frac{z}{x}=\frac{2y}{x}\)

Chỗ này mình làm hơi tắt nên tự hiệu nhé

\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)

+) TH1: Nếu x + y + t + z ≠ 0

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13

=> 3x = y + z + t => 4x = x + y + z + t (1)

3y = x + z + t 4y = x + y + z + t (2)

3z = x + y + t 4z = x + y + z + t (3)

3t = x + y + z 4t = x + y + z + t (4)

Từ (1)(2)(3)(4) => x = y = z = t

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4

+) TH2: Nếu x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(x + t)

t + z = -(x + y)

t + x = -(y + z)

⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4

Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

3 tháng 1 2018

Ta có: \(\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\)\(\hept{\begin{cases}x=y+z-x\\y=z+x-y\\z=x+y-z\end{cases}}\)(1)

Thế (1) vào M ta được:

\(M=\left(\frac{z+x-y}{x}+1\right)\left(\frac{y+z-x}{z}+1\right)\left(\frac{x+y-z}{y}+1\right)\)

\(M=\left(\frac{z+x-y+y+z-x}{x}\right)\left(\frac{y+z-x+x+y-z}{z}\right)\left(\frac{x+y-z+z+x-y}{y}\right)\)

\(M=\frac{2x\cdot2y\cdot2z}{xyz}=\frac{8xyz}{xyz}=8\)