\(cho\)\(\frac{x}{2}=y\).\(Tính\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

Vì \(\frac{x}{2}=y\Rightarrow\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

27 tháng 7 2019

Ta có : 

\(A=\frac{x+\frac{x}{2}}{x-\frac{x}{2}}=\left(\frac{3}{2}x\right):\left(\frac{1}{2}x\right)=\frac{3}{2}x.\frac{2}{x}=3\)

2 tháng 9 2016

Chào em, em hãy xem lời giải dưới đây nhé!

Lời giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2

=abz−acy+bcx−abz+acy−bcx/a2+b2+c2   =0               (*)

Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z     (1)

Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x     (2)

Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b) 

Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2

Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y

Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2

Từ đó tìm đc x, y

2 tháng 9 2019

56++8HJK

2 tháng 9 2019

a.

X/3 = - 3/Y

=> XY = - 9

=> X = {-9; - 3; - 1; 1; 3 ; 9} <=> Y = {1; 3 ; 9; - 9; - 3;-1}

6 tháng 11 2017

TA CỘNG 1 VÀO ĐẲNG THỨC TRÊN

\(\Rightarrow\)X=Y=Z=T

VẬY A=4 ;-1

6 tháng 11 2017

A = { 4 ; -1 }

k cho mk nha

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)\)

Xét 2 TH

+> Nếu \(x+y+z=0\)

=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

=> \(A=\left(-\frac{z}{y}\right)\left(-\frac{x}{z}\right)\left(-\frac{y}{x}\right)=-1\)


+> Nếu \(x+y+z\ne0\)

\(\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013y}{y}\)

=> \(\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{z+x}{y}+2013\)

=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}\)\(=\frac{x+y+y+z+z+x}{x+y+z}=2\)

=> \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

=> A = 2.2.2=8

8 tháng 11 2019

Ta có :

\(A=\frac{x+y+2013z}{z}=\frac{y+z+2013x}{x}=\frac{x+z+2013}{y}\)

\(\Leftrightarrow A=\frac{x+y}{z}+2013=\frac{y+z}{x}+2013=\frac{x+z}{y}+2013=2015\)( Chỗ này áp dụng Tc của dãy tỉ số bằng nhau là ra )

\(\Leftrightarrow\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=2\)

\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\x+z=2y\end{cases}}\)

Thay vào ta có :

\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)\)

\(=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)

Vậy ...........

2 tháng 8 2016

a. \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(xy=54\Rightarrow2k3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k\in\left\{3;-3\right\}\)

\(k=3\Rightarrow x=6;y=9\)

\(k=-3\Rightarrow x=-6;y=-9\)

b.\(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)

\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\Rightarrow25k^2-9k^2=4\)

\(\Rightarrow16k^2=4\Rightarrow k^2=\frac{1}{4}\Rightarrow k\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

\(k=\frac{1}{2}\Rightarrow x=\frac{5}{2};y=\frac{3}{2}\)

\(k=-\frac{1}{2}\Rightarrow x=\frac{-5}{2};y=\frac{-3}{2}\)

c.\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow x=20,y=30,z=42\)

d.\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\};y^2=64\Rightarrow y\in\left\{8;-8\right\}\)

22 tháng 7 2019

Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)

Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)

\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)

Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)

\(y=4.\sqrt[3]{\frac{1}{4}}\)

Câu 3 4 5 tương tư:

câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))

22 tháng 7 2019

Bạn ơi mình chưa học cách bạn làm

+) TH1: Nếu x + y + t + z ≠ 0

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13

=> 3x = y + z + t => 4x = x + y + z + t (1)

3y = x + z + t 4y = x + y + z + t (2)

3z = x + y + t 4z = x + y + z + t (3)

3t = x + y + z 4t = x + y + z + t (4)

Từ (1)(2)(3)(4) => x = y = z = t

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4

+) TH2: Nếu x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(x + t)

t + z = -(x + y)

t + x = -(y + z)

⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4

Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!

21 tháng 10 2018

Sau khi thử nhiều cách không được thì ta cùng nhìn tới "anh" đặt=))

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=7k\end{cases}}\). Thay vào A,ta có:

\(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k\left(2-5+7\right)}{k\left(2+10-7\right)}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)