Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)
\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)
\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)
Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)
\(\Rightarrowđpcm\)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)
\(\Rightarrow a=2018k\), \(b=2019k\), \(c=2020k\)
Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2018k-2019k\right)\left(2019k-2020k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2=\left(2k\right)^2\)
Ta lại có: \(\left(a-c\right)^2=\left(2018k-2020k\right)^2=\left(-2k\right)^2=\left(2k\right)^2\)
Vậy \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)
Thế vị trí tương ứng ta được :
VT = 4( a - b )( b - c )
= 4( 2018k - 2019k )( 2019k - 2020k )
= 4(-k)(-k)
= 4k2
VP = ( a - c )2
= ( 2018k - 2020k )2
= ( -2k )2
= 4k2
=> VT = VP
=> đpcm
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)
\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)
\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)
Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >
Ta có :
\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)
Lại có :
\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)
Từ (1) và (2) \(\RightarrowĐPCM\)
Đặt \(\frac{a}{2019}=\frac{b}{2020}=\frac{c}{2021}=k\Rightarrow\hept{\begin{cases}a=2019k\\b=2020k\\c=2021k\end{cases}}\)
Khi đó 4(a - b)(b - c) = 4(2019k - 2020k)(2020k - 2021k) = 4(-k)(-k) = 4k2 = (2k)2 (1)
Lại có (c - a)2 = (2021k - 2019k) = (2k)2 (2)
Từ (1)(2) => 4(a - b)(b - c) = (c - a)2